Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not only handle rotor failure but is also able to navigate the biplane quadrotor to a safe place for landing. In this structure, after the detection of total rotor failure, the biplane quadrotor will imitate reallocating control signals and then perform the transition maneuver and switch to the fixed-wing mode; control signals are also reallocated. A synthetic jet actuator (SJA) is used as the redundancy that generates the desired virtual deflection to control the pitch angle, while other states are taken care of by the three rotors. The SJA has parametric nonlinearity, and to handle it, an inverse adaptive compensation scheme is applied and a closed-loop stability analysis is performed based on the Lyapunov method for the pitch subsystem. The effectiveness of the proposed control structure is validated using numerical simulation carried out in the MATLAB Simulink.

Details

Title
Rotor Failure Compensation in a Biplane Quadrotor Based on Virtual Deflection
Author
Dalwadi, Nihal 1   VIAFID ORCID Logo  ; Deb, Dipankar 1   VIAFID ORCID Logo  ; Ozana, Stepan 2   VIAFID ORCID Logo 

 Department of Electrical Engineering, Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad 380026, India; [email protected] 
 Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic; [email protected] 
First page
176
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693968766
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.