Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Augmented and Virtual Reality-based surgical simulations have become some of the fastest-developing areas, due to the recent technological advances and changes, in surgical education. Cutting simulation is a crucial part of the virtual surgery simulation in which an incision operation is performed. It is a complex process that includes three main tasks: soft body simulation, collision detection and handling, and topological deformation of the soft body. In this paper, considering the content developer’s convenience, the deformable object simulation, using position-based dynamics (PBD), was applied in the Unity 3D environment. The proposed algorithm for fast collision detection and handling between the cutting tool and the deformable object uses a sweep surface. In case of incision, the algorithm updates the mesh topology by deleting intersected triangles, re-triangulation, and refinement. In the refinement part, the boundary edges threshold was used to match the resolution of new triangles to the existing mesh triangles. Additionally, current research is focused on triangle surface meshes, which help to reduce the computational costs of the topology modifications. It was found that the algorithm can successfully handle arbitrary cuts, keeping the framerate within interactive and, in some cases, in the real-time.

Details

Title
Cutting Simulation in Unity 3D Using Position Based Dynamics with Various Refinement Levels
Author
Khan, Lyudmila 1 ; Yoo-Joo, Choi 2 ; Hong, Min 3   VIAFID ORCID Logo 

 Department of Software Convergence, Soonchunhyang University, Asan 31538, Korea; [email protected] 
 Department of Newmedia, Seoul Media Institute Technology, Seoul 07590, Korea; [email protected] 
 Department of Computer Software Engineering, Soonchunhyang University, Asan 31538, Korea 
First page
2139
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693976457
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.