Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper examined a set of over two thousand crypto-coins observed between 2015 and 2020 to estimate their credit risk by computing their probability of death. We employed different definitions of dead coins, ranging from academic literature to professional practice; alternative forecasting models, ranging from credit scoring models to machine learning and time-series-based models; and different forecasting horizons. We found that the choice of the coin-death definition affected the set of the best forecasting models to compute the probability of death. However, this choice was not critical, and the best models turned out to be the same in most cases. In general, we found that the cauchit and the zero-price-probability (ZPP) based on the random walk or the Markov Switching-GARCH(1,1) were the best models for newly established coins, whereas credit-scoring models and machine-learning methods using lagged trading volumes and online searches were better choices for older coins. These results also held after a set of robustness checks that considered different time samples and the coins’ market capitalization.

Details

Title
Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death
Author
Fantazzini, Dean  VIAFID ORCID Logo 
First page
304
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
19118066
e-ISSN
19118074
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694004926
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.