Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Silver nanoparticles as photothermal agents have the problems of low stability and low photothermal conversion efficiency. Amphiphilic daptomycin can improve the stability of silver nanoparticles, thereby improving their photothermal conversion efficiency. Herein, daptomycin-biomineralized silver nanoparticles (Dap-AgNPs) were prepared by reducing silver nitrate with sodium borohydride in the presence of daptomycin as a stabilizer and biomineralizer. The Dap-AgNPs had good solution stability and peroxidase-like activity. Furthermore, the photothermal conversion efficiency of the Dap-AgNPs was as high as 36.8%. The Dap-AgNPs displayed good photothermal stability under irradiation. More importantly, the Dap-AgNPs showed good cell compatibility with HeLa cells and HT-29 cells without irradiation by 808-nanometer near-infrared light at a concentration of 0.5 mM, and the cell viability was greater than 85.0%. However, the Dap-AgNPs displayed significant anti-tumor ability with irradiation by 808-nanometer near-infrared light, which was due to the increasing temperature of the culture medium caused by the Dap-AgNPs. In conclusion, Dap-AgNPs have potential applications as photothermal agents in the treatment of tumors.

Details

Title
Daptomycin-Biomineralized Silver Nanoparticles for Enhanced Photothermal Therapy with Anti-Tumor Effect
Author
Zhang, Jie 1 ; Wang, Jing 1 ; Fan, Guixiu 2 ; Zhang, Bingjie 1 ; Ma, Guanglong 3   VIAFID ORCID Logo  ; Xiao, Haiyan 1 ; Wang, Longgang 2 

 Key Laboratory of Applied Chemistry, Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; [email protected] (J.Z.); [email protected] (J.W.); [email protected] (G.F.); [email protected] (B.Z.) 
 Key Laboratory of Applied Chemistry, Nano-Biotechnology Key Lab of Hebei Province, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; [email protected] (J.Z.); [email protected] (J.W.); [email protected] (G.F.); [email protected] (B.Z.); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China 
 Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton SO166YD, UK; [email protected] 
First page
2787
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2694055247
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.