Abstract

The Laplace operator encodes the behavior of physical systems at vastly different scales, describing heat flow, fluids, as well as electric, gravitational, and quantum fields. A key input for the Laplace equation is the curvature of space. Here we discuss and experimentally demonstrate that the spectral ordering of Laplacian eigenstates for hyperbolic (negatively curved) and flat two-dimensional spaces has a universally different structure. We use a lattice regularization of hyperbolic space in an electric-circuit network to measure the eigenstates of a ‘hyperbolic drum’, and in a time-resolved experiment we verify signal propagation along the curved geodesics. Our experiments showcase both a versatile platform to emulate hyperbolic lattices in tabletop experiments, and a set of methods to verify the effective hyperbolic metric in this and other platforms. The presented techniques can be utilized to explore novel aspects of both classical and quantum dynamics in negatively curved spaces, and to realise the emerging models of topological hyperbolic matter.

Spaces with negative curvature are difficult to realise and investigate experimentally, but they can be emulated with synthetic matter. Here, the authors show how to do this using an electric circuit network, and present a method to characterize and verify the hyperbolic nature of the implemented model.

Details

Title
Simulating hyperbolic space on a circuit board
Author
Lenggenhager, Patrick M. 1 ; Stegmaier, Alexander 2 ; Upreti, Lavi K. 2   VIAFID ORCID Logo  ; Hofmann, Tobias 2   VIAFID ORCID Logo  ; Helbig, Tobias 2   VIAFID ORCID Logo  ; Vollhardt, Achim 3   VIAFID ORCID Logo  ; Greiter, Martin 2   VIAFID ORCID Logo  ; Lee, Ching Hua 4   VIAFID ORCID Logo  ; Imhof, Stefan 5 ; Brand, Hauke 5   VIAFID ORCID Logo  ; Kießling, Tobias 5 ; Boettcher, Igor 6 ; Neupert, Titus 3   VIAFID ORCID Logo  ; Thomale, Ronny 2   VIAFID ORCID Logo  ; Bzdušek, Tomáš 7 

 Paul Scherrer Institute, Condensed Matter Theory Group, Villigen PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501); University of Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650); Institute for Theoretical Physics, ETH Zurich, Zurich, Switzerland (GRID:grid.5801.c) (ISNI:0000 0001 2156 2780) 
 Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 University of Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650) 
 National University of Singapore, Department of Physics, Singapore, Republic of Singapore (GRID:grid.4280.e) (ISNI:0000 0001 2180 6431) 
 Physikalisches Institut, Universität Würzburg, Würzburg, Germany (GRID:grid.8379.5) (ISNI:0000 0001 1958 8658) 
 University of Alberta, Department of Physics, Edmonton, Canada (GRID:grid.17089.37) (ISNI:0000 0001 2190 316X); Theoretical Physics Institute, University of Alberta, Edmonton, Canada (GRID:grid.17089.37) (ISNI:0000 0001 2190 316X) 
 Paul Scherrer Institute, Condensed Matter Theory Group, Villigen PSI, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501); University of Zurich, Department of Physics, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2695800954
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.