Abstract

A Monte Carlo simulation of Phase Doppler systems has been developed. It consists of three sections, the droplet flow description, generation of the photomultiplier signals and then their processing to determine droplet velocities and the time shift between the signals from the three scattered light detection apertures. With highly realistic Doppler bursts being simulated and processed, the question arises as to whether the signal processing software could be used to process ‘real-world’ experimental signals. In a preliminary assessment of its capabilities in such a situation, actual spray Doppler signals (from a Dantec fibre-based PDA system with a BSA signal processor) were recorded and used as input to the software signal processor. The signals from the three photomultipliers were input first into a Picoscope and then into the BSA processor. In this way droplet velocities and size estimates would be available from the BSA as control data. The signal outputs were taken as csv files, and input directly into the software signal processor. Initially the software determined the time location of the centre of each signal burst envelop. This approach was shown to measure signal delays from single cycle to multiple cycles. For this experiment, the software was modified by adding a zero-crossing approach to measure the single cycle delays. The introduction of this method should establish the accuracy of the complete software package in the real world as the results from the preliminary experiment show good agreement between the two techniques.

Details

Title
Software-based processing system for phase Doppler systems
Author
Jedelsky, Jan; Maly, Milan; Cejpek, Ondrej; Wigley, Graham; Meyers, James F
Section
Contributions
Publication year
2022
Publication date
2022
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2696853228
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.