Introduction
Wild cherry (Prunus avium L.) is a noble tree species spread throughout Europe, Northern Africa, and Western Asia, mostly in mixed stands. Deep moist soils are suitable for its growth, but due to its high adaptability, it grows in a wide range of climatic and edaphic conditions ([47]). In addition to its importance in fruit production, there is considerable interest in its wood by the furniture industry, but it also has a significant role in agroforestry ([34]). Along with its economic role, it has ecological significance because the conservation of genetic variability of this species is considered to be an important part of the preservation of biodiversity, in general ([38]). Therefore, many European countries have developed long-term breeding projects to improve the species’ wood production and increase its tolerance to predominant biotic and abiotic stressors ([9], [28]).
Drought is an important abiotic stress, caused by insufficient water availability and water imbalance in the ecosystem. It leads to osmotic stress that can produce severe consequences in plants and causes considerable losses in the production of woody species. Due to climate change, plant species have faced new environmental conditions that intensively influence biological variability ([35]). Although covering an extensive geographical range and showing a high genetic variability, Wild cherry is considered to be negatively affected by upcoming/ongoing climate change due to its drought vulnerability ([5]). Considering the predictions for Southeastern Europe that include a rise in temperature and decrease of precipitation ([37]), the interest in drought tolerance studies in Wild cherry grows. In that sense, the selection of drought-tolerant varieties is seen as an important way of mitigating the problems caused by the expected climatic conditions ([9], [18]). Vuksanović et al. ([45]) also suggest that the basic approach to the mitigation of climate changes should be the breeding and cultivation of tolerant cultivars, particularly of forest tree species tolerant to drought. Rubio et al. ([33]) claim that drought-typical effects could be found as a result of the influence of other abiotic factors, such as stresses caused by salt, high and low temperatures. On the other hand, it is known that a combination of drought and other abiotic stress factors leads to a very specific plant response that is not an extrapolation of responses to separately applied stressors ([24]). Furthermore, the overlap of the responses at the transcriptomic and metabolic level among drought and other abiotic stress factors such as heat and salt stress appeared to be smaller than previously thought ([24]).
In order to optimize the evaluation process for drought tolerance, it is necessary to investigate the mechanisms of plants’ drought tolerance, especially in the case of forest tree species. Many studies on controlled water stress are based on osmotic stress induced by water-soluble, nonionic polymer polyethylene glycol (PEG - [19]). According to Osmolovskaya et al. ([27]), PEG-induced drought stress models are currently “state of the art”. Agar-based models are preferable since they allow avoiding or reducing the development of the hypoxic state. The response of plants to drought stress includes numerous changes in course of mitigation of the negative effect of water deficiency and can be monitored at multiple levels ([2]). Among them, special attention is given to the detrimental effect of drought-induced oxidative stress which presents the imbalance between reactive oxygen species (ROS) production and antioxidant defense systems ([36], [44]). Therefore, drought tolerance is intrinsically linked to antioxidant defense mechanisms ([30]), and investigation on antioxidant response could indicate more drought tolerant Wild cherry clones. To ameliorate oxidative stress, plants evolved complex enzymatic and non-enzymatic antioxidant systems that can neutralize and scavenge these ROS species and prevent the occurrence of oxidative stress in plants ([46]). Total phenolics and total flavonoids content, together with ROS-scavenging related tests are commonly used as markers of drought-related oxidative stress ([27], [43]).
Due to all limitations caused by multiannual growth and development of tree species, a large area that is required for experiments in the field conditions, as well as the influence of the external multifactorial stressors present in the natural environment, in vitro culture is one of the suitable models for fast examination of the forest trees’ tolerance to abiotic agents in relatively controlled conditions. In vitro culture has broad application in forestry and horticulture, presenting a low-cost and short-time mean for efficient mass production of healthy planting material with clonal purity, as well as evaluation of tolerance to abiotic agents ([43]). Mozafari et al. ([25]) reported that in vitro techniques are of great importance as a propagation tool for superior genotypes, especially in horticultural and fruit crops. Turhan & Baser ([41]) found a positive correlation between drought tolerance of genotypes in the laboratory and experiments under field conditions in soybean and sunflower, respectively. In that sense, there is a need for the implementation and improvement of in vitro tests as easily controlled models for the evaluation of drought tolerance in genotypes of forest tree species ([44]).
The aim of the study was twofold: (i) to examine the responses of two Wild cherry clones to drought-like conditions in vitro, induced by different concentrations of polyethylene glycol (PEG) in a growing medium; (ii) to evaluate the complex relationship between morphological, physiological, and biochemical traits using multivariate statistics. The aim was set in the context of drought tolerance variability, the necessity of preservation and improvement of biodiversity of Wild cherry, and its use in landscape architecture, horticulture, and forests regeneration.
The novelty of this research lies in the evaluation of antioxidant capacity according to appropriate tests and total phenolic and flavonoids content, and the study of relationship of these parameters to morphological and physiological traits. We assumed that the use of biochemical parameters in combination with morphological and physiological traits will improve the evaluation and selection of drought tolerant Wild cherry clones in vitro and give a clearer answer on differences between the two examined clones.
Material and methods
Plant material and experimental design
The study involved two clones of Wild cherry: Prunus avium L. clone 8A and P. avium L. clone 6A, which were selected in natural stand and multiplied by micropropagation in vitro by shoot tip culture to preserve clonal purity and avoid somaclonal variability. Both clones were obtained by vegetative propagation of accessions, chosen by positive selection for straight tree, vigorous growth, and tolerance to prevalent biotic agents from a natural population in Northern Serbia (45° 10′ N; 19° 18′ E; elevation 207 m a.s.l.) and transferred to the gene pool of the Institute of Lowland Forestry and Environment, University of Novi Sad, Serbia. These accessions were introduced in tissue culture in early spring of 2016, and regularly subcultured for four years until the experiment was set. The micropropagation was performed on solid modified MS basal growing medium ([26]) with added 6.5 g L-1 agar, 30 g L-1sucrose, 1 mg L-1 BA, 0.5 mg L-1 kinetin, 50 mg L-1 L-lysine, 50 mg L-1 adenine sulfate, and 100 mg L-1 myo-inositol. The pH of the media was adjusted to pH 5.8 by 1N HCl and 1N NaOH before sterilization. The cultures were grown for 35 days in controlled conditions at a temperature of t = 26 ± 2 °C, under a white light of 3500 lx m-2 emitted by LED lamps in 16h/8h day/night regime, and then subcultured in the same conditions for further propagation.
Drought tolerance of examined clones was tested on the same solid growing medium with three treatments that differed in the concentration of polyethylene glycol (PEG 6000): 0 (Control); 20 g L-1 (PEG20); and 50 g L-1 (PEG50). The concentrations of PEG were chosen to induce considerable osmotic stress in explants ([18]), and to achieve solidification of agar which can be a problem in such studies ([27]). For each Clone × PEG combination, three jars with five explants per jar (1.0 cm high shoot tips) were set. The experiment was set in a completely random design. Measured or average values at the level of the jar were treated as repetition and as such entered further statistical analysis.
Morphological, physiological, and biochemical analyses
After 35 days of cultivation, the height of the highest shoot (SH, mm) and the number of new shoots (NS) were recorded. Also, for every jar the percentage of explant survival (%) and percentage of explants with new shoots (i.e., percentage of multiplication - MP, %) were calculated. After the measurement of morphological parameters, the same plant material was used for the assessment of drought stress intensity on explants by physiological and biochemical parameters. Two samples of leaves and stems per jar were collected. Physiological measurements included parameters related to the content of photosynthetic pigments (mg g-1) in the plant tissues, determined by Lichtenthaler & Welburn ([22]) for the following pigments: chlorophyll a (Chl a), chlorophyll b (Chl b), and carotenoids (Car), and following derived parameters: chlorophyll a+b (Chl a+b) and chlorophyll a/b ratio (Chl a/b). In every sample, the following biochemical parameters related to oxidative stress were measured: total phenolic content (TPC, mg GAE g-1, where GAE stands for gallic acid equivalents - [20]), total flavonoids content (TFC, mg QE g-1, where QE stands for quercetin equivalents - [8]), ferric reducing antioxidant power (FRAP, mg AS g-1, where AS stands for ascorbic acid equivalents - [6] ), radical scavenging activity against ABTS·+ (2.2′-Azino-bis[3-ethylbenzthiazoline-6-sulfonic acid], ABTS, expressed in mM TE g-1, where TE stands for Trolox equivalents - [23]), and flavonoids/phenolics ratio (TFC/TPC). Ethanol extracts were obtained by extraction from 100 mg of grounded fresh plant material in 2 ml of 96% EtOH. Those extracts were then used to determine the content of photosynthetic pigments and measure biochemical parameters. All measured biochemical and photosynthetic parameters were determined by the spectrophotometric method on a MultiSkan™ GO spectrophotometer (Thermo Fisher Scientific, Waltham, MS, USA) in triplicates, i.e., three measurements per sample. Physiological and biochemical traits were measured or calculated both for leaves and stems. Physiological and biochemical traits were measured or calculated both for leaves and stems.
Statistical analyses
Two and three-way factorial analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test for a significance level of α = 0.05 were used for statistical analysis of data. The main effects (factors) examined were as follows: Clone and PEG concentration in morphological traits and Clone, PEG concentration, and Organ in physiological and biochemical traits. The NS and MP were transformed by square root transformation (√x+1) and arcsine transformation (arcsin √x), respectively, to meet the normal distribution of frequencies, which is required for used statistical tests. The relationships between examined traits were analyzed by Principal Component Analysis (PCA) according to their loadings with the first two principal components. The entering data was the matrix of Pearson’s correlation coefficients based on average values that are calculated at the level of interaction Clone × PEG concentration. For physiological and biochemical parameters, values calculated for leaves and stem entered PCA as separate parameters and in that sense were further discussed. Statistical analysis was performed by statistical program package STATISTICA® v. 14.0 ([40]).
Results
Variability of morphological traits
The percentage of explant’s survival in the experiment was 100% in all treatments. According to the results of the F-test of two-way ANOVA, variation of shoot height, the number of new shoots, and multiplication percentage was significantly influenced by both factors (Clone and PEG concentration). The effect of interaction Clone × PEG concentration was significant only for shoot height and number of new shoots (Tab. 1). The results of statistical analysis suggested a greater vigor of clone 8A than clone 6A by all examined morphological traits. Also, differences were significant between the total means of all examined PEG concentrations. There was a clear inhibitory effect of drought, which increased with the increase of concentration of PEG in the medium (data not shown).
Tab. 1 - Results of F-test on examined morphological characters in Wild cherry clones. (ns): non-significant; (*): p < 0.05; (**): p < 0.01.
Trait | Shoot height | Number of new shoots | Multiplication percentage |
---|---|---|---|
Clone (A) | 27.292** | 55.158** | 11.1031** |
PEG concentration (B) | 21.405** | 100.939** | 31.6724** |
Interaction A×B | 4.478* | 11.044** | 0.0723ns |
The strongest inhibitory effect of drought was recorded on the NS, as the NS in plants cultivated on treatment PEG50 was more than ten times lower than that observed in the control treatment (0.05). Error bars represent confidence intervals (α = 0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 1b). The effect of drought on shoot height was relatively weak, being significant only in clone 8A. The SH measured on PEG50 treatment was 14.73 ± 2.25 mm in clone 6A and 17.07 ± 3.06 mm in clone 8A (0.05). Error bars represent confidence intervals (α = 0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 1a). Clone 8A achieved a higher multiplication rate on PEG50 treatment (39.36% with confidence interval CI0.05 = 20.3-60.3%) compared to clone 6A (9.25% with CI0.05 = 0.17-29.7% - 0.05). Error bars represent confidence intervals (α = 0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 1c). Generally, the number of new shoots, as well as multiplication percentage were significantly higher on control than on media with PEG in both clones, but the inhibitory effect of water stress was stronger in clone 6A, suggesting its lower drought tolerance.
Fig. 1 - Changes in morphological traits of Wild cherry clones on media with different PEG concentrations. (a): Shoot height (SH); (b): number of new shoots (NS); (c): multiplication percentage (MP). Differences between values of the same traits that are labeled with the same letter are not statistically significant (p > 0.05). Error bars represent confidence intervals ([alpha] = 0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.
Variability of physiological and biochemical traits
Statistically significant effect of factor Clone in examined physiological and biochemical traits was found only for Chl b, Car, FRAP, and ABTS assays. In contrast, variation of the majority of examined physiological and biochemical traits were significantly influenced by the main effects of Organ and PEG concentration (Tab. 2).
Tab. 2 - Results of the F-test for physiological and biochemical traits of Wild cherry clones. (Chl a): Chlorophyll a content; (Chl b): Chlorophyll b content; (Chl a+b): Chlorophyll a+b content; (Car): Carotenoid content; (Chl a/b): Chlorophyll a/b ratio; (TPC): Total phenolic content; (TFC): total flavonoids content; (FRAP): ferric reducing antioxidant power; (ABTS): radical scavenging activity against ABTS·+; (TFC/TPC): flavonoids/phenolics ratio; (ns): non-significant; (*): p < 0.05; (**): p < 0.01.
Group | Traits | Clone (A) | Organ (B) | c(PEG) (C) | Interaction A×B | Interaction A×C | Interaction B×C | Interaction A×B×C |
---|---|---|---|---|---|---|---|---|
Physiological traits | Chl a | 1.08 ns | 231.12 ** | 17.05 ** | 9.11 ** | 1.24 ns | 8.85 ** | 4.76 * |
Chl b | 21.13 ** | 179.40 ** | 15.26 ** | 16.24 ** | 0.52 ns | 15.88 ** | 0.22 ns | |
Car | 18.75 ** | 38.24 ** | 4.35 * | 0.03 ns | 1.12 ns | 1.95 ns | 6.56 ** | |
Chl a+b | 1.78 ns | 267.69 ** | 20.47 ** | 14.88 ** | 1.11 ns | 13.35 ** | 1.64 ns | |
Chl a/b | 0.35 ns | 5.81 * | 7.84 ** | 4.07 * | 1.81 ns | 1.02 ns | 7.18 ** | |
Biochemical traits | TPC | 0.11 ns | 142.73 ** | 786.52 ** | 19.72 ** | 8.14 ** | 3.30 * | 170.24 ** |
TFC | 0.86 ns | 19.72 ** | 12.51 ** | 13.75 ** | 7.05 ** | 2.02 ns | 3.54 * | |
FRAP | 130.29 ** | 81.35 ** | 31.14 ** | 12.16 ** | 7.33 ** | 1.97 ns | 0.64 ns | |
ABTS | 47.22 ** | 66.20 ** | 54.38 ** | 17.85 ** | 18.97 ** | 94.08 ** | 12.87 ** | |
TFC/TPC | 4.87 * | 132.08 ** | 0.63 ns | 4.58 * | 4.33 ** | 21.84 ** | 15.70 ** |
Variability of physiological traits
According to statistical analysis, the Chl a content and Chl b and Car were significantly higher in leaves than in stem, while the opposite was for Chl a/b ratio. Also, there was a significant inhibitory effect of PEG50 treatment compared to the control treatment in all physiological traits except for the Chl a/b ratio. Differences between clones in total were significant in Chl b, which was higher in clone 6A (0.14 ± 0.05 mg g-1 FW) compared to clone 8A (0.08 ± 0.05 mg g-1 FW), and in Car which was higher in clone 8A (0.059 ± 0.026 mg g-1 FW) than in clone 6A (0.032 ± 0.026 mg g-1 FW - data not shown).
Measured values for Chl a content in PEG50 treatment ranged from 0.10 ± 0.05 mg g-1 FW in stems of clone 6A to 0.36 ± 0.10 mg g-1 FW in leaves of clone 8A (0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2a). Also, at the same treatment (PEG50) in the stems, the lowest values for the content of Chl b, Car, and Chl a+b were measured in clone 6A (0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2b, 0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2c, 0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2d). Interestingly, the content of Car in leaves of clone 8A was not significantly different in PEG50 treatment (0.089 ± 0.028 mg g-1 FW) compared to the control (0.078 ± 0.004 mg g-1 FW - 0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2c). For Chl b the inhibitory effect of treatment with 50 g L-1 PEG was significant in leaves of both clones, but in leaves of clone 8A, Chl b was four times higher in control treatment than in treatment with 50 g L-1 PEG, while in leaves of clone 6A it was two times higher. The Chl a+b content in the stems was lower by 84% (clone 6A) and 67% (clone 8A) compared to leaves in the control treatment. Also, the Chl a+b content in the PEG50 was 73% (clone 6A) and 56% (clone 8A) lower in stems than in leaves. The inhibitory effect of water stress was mostly evident in leaves, except for Chl a/b ratio (0.05). Error bars represent confidence intervals (α=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.">Fig. 2e), while in stem the only significant difference at this level was in Chl a/b ratio between control and treatment PEG50.
Fig. 2 - Changes in examined physiological traits in Wild cherry clones on media with different PEG concentrations. (a): Chlorophyll a content (Chl a); (b): Chlorophyll b content (Chl b); (c): Carotenoid content (Car); (d): Chlorophyll a+b content (Chl a+b); (e): Chlorophyll a/b ratio (Chl a/b). Differences between values of the same traits that are labeled with the same letter are not statistically significant (p > 0.05). Error bars represent confidence intervals ([alpha]=0.05). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.
Variability of biochemical traits
According to statistical analysis at the level of main effects, significant differences between examined clones were found only for FRAP, ABTS, and TFC/TPC ratio (data not shown). The reaction of clones in these three characters differed: 8A had a higher FRAP and TFC/TPC, but lower ABTS than clone 6A. The difference between organs was significant in all parameters of oxidative stress. The values for TPC and FRAP were higher in stems, while for TFC, ABTS and TFC/TPC they were higher in leaves. The inhibitory effect of drought was clear in the cases of TPC, TFC, and ABTS, while FRAP was significantly higher in the PEG50 than in the control treatment in clone 8A.
The highest differentiation at the level of second-order interaction Clone × Organ × PEG concentration was achieved in total phenolic content and ABTS (0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3a, 0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3d). There was a clear trend of significantly decreased total phenolic content and total flavonoid content with increased PEG concentration (0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3a, 0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3b). Considering clone 8A, TPC on PEG50 treatment in leaves was 80.8% lower relative to the control, while TFC in the leaves was 57.9% lower than in the control plants. However, while ABTS in the leaves of both clones was significantly higher in PEG20 than in PEG50 treatment, the opposite trend was recorded in the stem. Likewise, while FRAP increased with elevated concentration of PEG in both leaves and stems of clone 8A, there were no significant differences in FRAP values relative to PEG concentration in the leaves and the stems of clone 6A (0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3c). TFC/TPC in the leaves of clone 8A increased and in stems of the same clone decreased in the presence of increased PEG concentration, while in clone 6A the influence of PEG50 treatment was not significant both in leaves and in stems (0.05). Error bars represent confidence intervals (α=0.05).">Fig. 3e).
Fig. 3 - Changes in biochemical traits in Wild cherry clones on media with different PEG concentrations. (a): total phenolic content (TPC); (b): total flavonoids content (TFC); (c): ferric reducing antioxidant power (FRAP); (d): radical scavenging activity against ABTS·+ (ABTS); (e): flavonoids/phenolics ratio (TFC/TPC). (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG. Differences between values of the same traits that are labeled with the same letter are not statistically significant (p > 0.05). Error bars represent confidence intervals ([alpha]=0.05).
Relationship between examined traits
According to the first two principal components that accounted for 71.7% of the total variance, there was a close relationship between morphological parameters that achieved their highest loadings onto the first principal component that explained 44.47 % of the total variation (Fig. 4). Physiological parameters, measured within the same organ, were in a relatively close relationship. In contrast, a weak correlation between physiological parameters measured in the leaves and the stems was observed. Parameters FRAP and ABTS were in negative correlation and for both of them, measurements between leaves and stem were in positive correlation. There was a strong positive correlation between TPC measured in the leaves and the stems, but weak in the case of TFC. However, a strong negative correlation was recorded between TFC/TPC measured in the leaves and the stems. The parameter TFC/TPC in both stem and leaves, as well as TFC in the stems, achieved the strongest, while FRAP and ABTS achieved the weakest correlation with examined morphometric parameters.
Fig. 4 - Loadings of the first two principal components for physiological and biochemical parameters. (SH): shoot height; (NS): number of new shoots; (MP): percentage of multiplication; (Chl a): Chlorophyll a content; (Chl b): Chlorophyll b content; (Chl a+b): Chlorophyll a+b content; (Car): Carotenoid content; (Chl a/b): Chlorophyll a/b ratio; (TPC): Total phenolic content; (TFC): total flavonoids content; (FRAP): ferric reducing antioxidant power; (ABTS): radical scavenging activity against ABTS+; (TFC/TPC): flavonoids/phenolics ratio; (L): leaves; (S): stems.
Discussion
In the present study, we examined the effects of two levels of water stress in vitro on two clones of Wild cherry. The levels of water stress were induced by two different concentrations of polyethylene glycol. The study of differences in the reaction of two clones on PEG concentrations was mainly based on a comparison of results gained on media with PEG to those recorded on control treatment. In this context, we hypothesized that studied accessions will demonstrate different performances in response to drought-induced stress, therefore facilitating the identification of those clones that might be potentially used for reforestation of drought-prone environments. As references, we selected well-established morphological, physiological, and biochemical parameters. Morphological response to water stress in this study resulted in the reduction of all measured morphological parameters: shoot height, number of new shoots, and multiplication percentage (Fig. 5). A similar inhibitory effect of 50 g L-1 PEG on the same morphological traits was obtained by Vuksanović et al. ([44]) in White poplar clones grown in vitro. Our results are also in concordance with other studies which reported the negative effect of PEG on shoot height in plants grown in vitro ([41], [14]). Growth reduction of Wild cherry explants with increasing concentration of PEG in micropropagation medium could be probably explained as a result of osmotic stress, reduced turgor pressure, and limitation of nutrient uptake. Anjum et al. ([3]) reported that under drought conditions, cell elongation can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. Based on presented data for morphological traits, clone 8A was characterized by a higher tolerance to drought-like conditions in vitro compared to clone 6A. Considering presented results for morphological parameters, particularly the clear differentiation of two examined clones by the difference between PEG50 and control treatment in SH and MP, medium with 50 g L-1 PEG could be proposed for further Wild cherry drought tolerance studies in vitro based on these morphological traits.
Fig. 5 - Explants of clone 8A after 35-days cultivation on examined PEG concentrations. (Control): 0; (PEG20): 20 g L-1 PEG; (PEG50): 50 g L-1 PEG.
Conclusions
The examined morphological and biochemical parameters appeared to be more convenient for the evaluation of drought tolerance in vitro than physiological parameters. The most promising traits for the evaluation of drought tolerance examined in our study are morphological traits and biochemical parameters. In particular, interesting parameters are those related to the content of flavonoids and phenolics, where most of them were in strong correlation with morphometric traits. We assume that the Wild cherry accession 8A was more tolerant to water stress than 6A because it was characterized by more intensive growth, higher MP, higher values of carotenoids, more intense decrement of ABTS and increment of FRAP values on treatment with 50 g L-1 PEG, compared to the clone 6A. The results obtained in this study suggest that further research on the drought tolerance of Wild cherry clones in vitro should be performed on a medium with 50 g L-1 PEG. Also, this study should be continued especially regarding variability in the response of different clones on drought stress by the examined and additional parameters in order to optimize the evaluation procedure.
List of abbreviations
PEG: polyethylene glycol; BA: 6-Benzylaminopurine; Chl a: chlorophyll a content; Chl b: chlorophyll b content; Chl a+b: chlorophyll a+b content; Car: carotenoid content; Chl a/b: chlorophyll a/b ratio; TPC: total phenolics content; TFC: total flavonoids content; FRAP: ferric reducing antioxidant power; ABTS: radical scavenging activity against ABTS·+ (2.2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid); TFC/TPC:, flavonoids/phenolics ratio; (L): leaves; (S): stems; GAE: gallic acid equivalents; QE: quercetin equivalents; AS: ascorbic equivalents; TE: Trolox equivalents; FW: fresh weight; PEG20: polyethylene glycol concentration 20 g L-1; PEG50: polyethylene glycol concentration 50 g L-1; SH: height shoot; NS: number of new shoots; MP: percentage of multiplication.
Acknowledgments
We acknowledge the Ministry of Education, Science and Technological Development of the Republic of Serbia.
Funding
This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Grant no. 451-03-9/2021-14/200117 and 451-03-9/2021-14/200197.
Conflicts of Interest
The authors declare no conflict of interest.
Author contributions
OS, KB, GV, VV, and SS contributed the ideas and designed the study. Material preparation and measurements of morphological, physiological, and biochemical analyses were performed by VV, KB, and KL. The statistical analysis was performed by VV and KB. VV and KB wrote the first version of the manuscript and all of the authors contributed critically to the drafts and gave final approval for publication.
(1) Ahmad MA, Javed R, Adeel M, Rizwan M, Yang Y (2020). PEG-6000 stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production and antioxidant activities in Stevia rebaudiana Bertoni. Plants 9: 1552.
(2) Alizadeh V, Shokri V, Soltani A, Yousefi MA (2015). Effects of climate change and drought-stress on plant physiology. International Journal of Advanced Biological and Biomedical Research 3 (1): 38-42.
(3) Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6(9) 2026-2032. Gscholar
(4) Ashraf MHPJC, Harris PJ (2013). Photosynthesis under stressful environments: an overview. Photosynthetica 51 (2): 163-190.
(5) Banković S, Medarević M, Pantić D, Petrović N (2008). National Forest Inventory of the Republic of Serbia: the forest fund of the Republic of Serbia. Ministry of Agriculture, Forestry and Water Management of the Republic of Serbia, the Forest Administration, Belgrade, Serbia, pp. 238. Gscholar
(6) Benzie IF, Strain JJ (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239 (1): 70-76.
(7) Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiologiae Plantarum 33: 1103-1111.
(8) Chang CC, Yang MH, Wen HM, Chern JC (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10 (3): 178-182.
(9) Ducci F, De Cuyper B, De Rogatis A, Dufour J, Santi F (2013). Wild cherry breeding (Prunus avium L). In: “Forest Tree Breeding in Europe” (Paques LE ed). Springer, Dordrecht, Netherlands, pp. 463-511. Gscholar
(10) Escamilla-Treviño LL (2011). Potential of plants from the genus Agave as bioenergy crops. BioEnergy Research 5 (1): 1-9.
(11) Ghanbary E, Fathizadeh O, Pazhouhan I, Zarafshar M, Tabari M, Jafarnia S, Parad G, Bader MKF (2021). Drought and pathogen effects on survival leaf physiology oxidative damage and defense in two Middle Eastern oak species. Forests 12 (2): 247.
(12) Guo XY, Zhang XS, Huang ZY (2010). Drought tolerance in three hybrid poplar clones submitted to different watering regimes. Plant Ecology 3 (2): 79-87.
(13) Hamooh BT, Sattar FA, Wellman G, Mousa MAA (2021). Metabolomic and biochemical analysis of two potato (Solanum tuberosum L) cultivars exposed to in vitro osmotic and salt stresses. Plants 10 (1): 98.
(14) Hernández-Pérez CA, Gómez-Merino FC, Spinoso-Castillo JL, Bello-Bello JJ (2021). In vitro screening of sugarcane cultivars (Saccharum spp. hybrids) for tolerance to polyethylene glycol-induced water stress. Agronomy 11 (3): 598.
(15) Huang D, Boxin O, Prior RL (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry 53: 1841-4856.
(16) Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies 331 (1): 42-47.
(17) Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology 11 (1): 100-105. Gscholar
(18) Jiroutova P, Kovalikova Z, Toman J, Dobrovolna D, Andrys R (2021). Complex analysis of antioxidant activity abscisic acid level and accumulation of osmotica in apple and cherry in vitro cultures under osmotic stress. International Journal of Molecular Sciences 22: 7922.
(19) Kautz B, Noga G, Hunsche M (2015). PEG and drought cause distinct changes in biochemical physiological and morphological parameters of apple seedlings. Acta Physiologiae Plantarum 37: 162.
(20) Kim DO, Jeong SW, Lee CY (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry 81 (3): 321-326.
(21) Kovalikova Z, Jiroutova P, Toman J, Dobrovolna D, Drbohlavova L (2020). Physiological responses of apple and cherry in vitro culture under different levels of drought stress. Agronomy 10 (11): 1689.
(22) Lichtenthaler K, Welburn AR (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591-592.
(23) Miller NJ, Rice-Evans CA (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research 26 (3): 195-199.
(24) Mittler R (2006). Abiotic stress the field environment and stress combination. Trends in Plant Science 11 (1): 15-19.
(25) Mozafari AA, Ghaderi N, Havas F, Dedejani S (2019). Comparative investigation of structural relationships among morpho-physiological and biochemical properties of strawberry (Fragaria × ananassa Duch) under drought and salinity stresses: a study based on in vitro culture. Scientia Horticulturae 256: 10860.
(26) Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497.
(27) Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Kaltsieva OA, Zhukov V, Tikhonovich I, Tarakhovskaya E, Frolov A, Wessjohann LA (2018). Methodology of drought stress research: experimental setup and physiological characterization. International Journal of Molecular Sciences 19: 4089.
(28) Poljaković-Pajnik L, Drekić M, Kovačević B, Stanković-Nedić M, Stojnić S, Orlović S (2019). Host preference of Myzus cerasi (Fabricius 1775) to half-sib lines of Prunus avium L from six populations assessed in the nursery trial. Topola 203: 87-94. Gscholar
(29) Popović BM, Stajner D, Zdero-Pavlović R, Tumbas-Saponjac V, Canadanović-Brunet J, Orlović S (2016). Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp). Plant Physiology and Biochemistry 105: 242-250.
(30) Popović BM, Stajner D, Zdero-Pavlović R, Tari I, Csiszár J, Gallé A, Poór P, Galović V, Trudić B, Orlović S (2017). Biochemical response of hybrid black poplar tissue culture (Populus× canadensis) on water stress. Journal of Plant Research 130 (3): 559-570.
(31) Puente-Garza CA, Meza-Miranda C, Ochoa-Martínez D, García-Lara S (2017). Effect of in vitro drought stress on phenolic acids flavonols saponins and antioxidant activity in Agave salmiana. Plant Physiology and Biochemistry 115: 400-407.
(32) Roussos PA (2013). Growth and biochemical responses of jojoba (Simmondsia chinensis (Link) Schneid) explants cultured under mannitol-simulated drought stress. Plant Biosystems 147 (2): 272-284.
(33) Rubio MC, Gonzalez EM, Minchin FR, Webb KJ, Arrese-Igor C, Ramos J, Becana M (2002). Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases. Physiologia Plantarum 115: 531-540.
(34) Russell K (2003). EUFORGEN Technical Guidelines for genetic conservation and use for wild cherry (Prunus avium). International Plant Genetic Resources Institute, Rome, Italy, pp. 6. Gscholar
(35) Samec D, Karalija E, Sola I, Vujičić Bok V, Salopek-Sondi B (2021). The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10: 118.
(36) Stajner D, Orlović S, Popović BM, Kebert M, Stojnić S, Klašnja B (2013). Chemical parameters of oxidative stress adaptability in beech. Journal of Chemistry 2013: 1-8.
(37) Stojanović DB, Matović B, Orlović S, Krič A, Trudić B, Galić Z, Stojnić S, Pekeč S (2014). Future of the main important forest tree species in Serbia from the climate change perspective. South-east European Forestry 5 (2): 117-124.
(38) Stojnić S, Kovačević B, Kebert M, Vasić V, Vuksanović V, Trudić B, Orlović S (2021). Genetic differentiation in functional traits among wild cherry (Prunus avium L) half-sib lines. Journal of Forestry Research 33: 991-1003.
(39) Talbi S, Rojas JA, Sahrawy M, Rodríguez-Serrano M, Cárdenas KE, Debouba M, Sandalio LM (2020). Effect of drought on growth photosynthesis and total antioxidant capacity of the saharan plant Oudeneya africana. Environmental and Experimental Botany 176: 104099.
(40) TIBCO Software Inc. (2020). Data science workbench, version 14. Web site. Online | Gscholar
(41) Turhan H, Baser I (2004). In vitro and in vivo water stress in sunflower (Helianthus annuus L). Helia 27 (40): 227-236.
(42) Viljevac M, Dugalić K, Mihaljević I, Sudar R, Jurković Z, Lepeduš H (2013). Chlorophyll content photosynthetic efficiency and genetic markers in two sour cherry (Prunus cerasus L) genotypes under drought stress. Acta Botanica Croatica 72 (2): 221-235.
(43) Vuksanović V (2019). Tolerance of white poplar assortments against abiotic factors in vitro. PhD thesis, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia, pp. 143. Gscholar
(44) Vuksanović V, Kovačević B, Kebert M, Katanić M, Pavlović L, Kesić L, Orlović S (2019a). Clone specificity of white poplar (Populus alba L) acidity tolerance in vitro. Fresenius Environmental Bulletin and Advances in Food Sciences 28 (11): 8307-8313. Gscholar
(45) Vuksanović V, Kovačević B, Orlović S, Kebert M, Katanić M, Pavlović L (2019b). Effect of drought on growth and multiplication of white poplar genotypes in tissue culture. In: Proceedings of the X International Scientific Agriculture Symposium “Agrosym 2019” (Kovačević D ed). Jahorina (Bosnia and Herzegovina), 03-06 Oct 2019. Faculty of Agriculture, East Sarajevo, Bosnia and Herzegovina, pp. 2936-2940. Gscholar
(46) Wang X, Gao Y, Wang Q, Chen M, Ye X, Li D, Chen X, Li L, Gao D (2019). 24-Epibrassinolide-alleviated drought stress damage influences antioxidant enzymes and autophagy changes in peach (Prunus persicae L) leaves. Plant Physiology and Biochemistry 135: 30-40.
(47) Welk E, De Rigo D, Caudullo G (2016). Prunus avium in Europe: distribution habitat usage and threats In: “European Atlas of Forest Tree Species” (San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T Mauri A eds) Publications Office of the European Union, Luxembourg, pp. 140-141. Gscholar
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
The effects of drought simulated via osmotic stress induced by polyethylene glycol (PEG) in the growing medium were examined on two Wild cherry (Prunus avium L.) clones (6A and 8A) based on thirteen morphometric, physiological, and biochemical traits. The shoot tips were exposed to two PEG concentrations (20 and 50 g L-1) in growing medium designed for micropropagation with axillary buds. The results showed that all morphological and physiological traits were significantly reduced, indicating a strong detrimental effect of increased PEG concentrations. The significant decline of radical scavenging activity against ABTS•+ and total content of flavonoids (TFC) and phenols (TPC) were recorded in both clones as a response to high PEG concentrations, whereas opposite trends were noticed for ferric reducing antioxidant power (FRAP). Clone 8A achieved better performance, having more intensive growth, higher multiplication percentage, higher values of carotenoids, more intense decrement of ABTS and increment of FRAP values compared to the clone 6A. The results of the principal component analysis indicate that parameter TFC/TPC in both stem and leaves, as well as TFC in the stems, achieved the strongest relation with morphometric parameters. Our results confirm the feasibility of in vitro evaluation of drought tolerance of Wild cherry, supporting further research on the variability of examined traits in this noble broadleaved tree species.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer