Full text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Glacier mass balance models are needed at sites with scarce long-term observations to reconstruct past glacier mass balance and assess its sensitivity to future climate change. In this study, North American Regional Reanalysis (NARR) data were used to force a physically based, distributed glacier mass balance model of Saskatchewan Glacier for the historical period 1979–2016 and assess its sensitivity to climate change. A 2-year record (2014–2016) from an on-glacier automatic weather station (AWS) and historical precipitation records from nearby permanent weather stations were used to downscale air temperature, relative humidity, wind speed, incoming solar radiation and precipitation from the NARR to the station sites. The model was run with fixed (1979, 2010) and time-varying (dynamic) geometry using a multitemporal digital elevation model dataset. The model showed a good performance against recent (2012–2016) direct glaciological mass balance observations as well as with cumulative geodetic mass balance estimates. The simulated mass balance was not very sensitive to the NARR spatial interpolation method, as long as station data were used for bias correction. The simulated mass balance was however sensitive to the biases in NARR precipitation and air temperature, as well as to the prescribed precipitation lapse rate and ice aerodynamic roughness lengths, showing the importance of constraining these two parameters with ancillary data. The glacier-wide simulated energy balance regime showed a large contribution (57 %) of turbulent (sensible and latent) heat fluxes to melting in summer, higher than typical mid-latitude glaciers in continental climates, which reflects the local humid “icefield weather” of the Columbia Icefield. The static mass balance sensitivity to climate was assessed for prescribed changes in regional mean air temperature between 0 and 7 C and precipitation between -20 % and +20 %, which comprise the spread of ensemble Representative Concentration Pathway (RCP) climate scenarios for the mid (2041–2070) and late (2071–2100) 21st century. The climate sensitivity experiments showed that future changes in precipitation would have a small impact on glacier mass balance, while the temperature sensitivity increases with warming, from -0.65 to -0.93 m w.e. a-1 C-1. The mass balance response to warming was driven by a positive albedo feedback (44 %), followed by direct atmospheric warming impacts (24 %), a positive air humidity feedback (22 %) and a positive precipitation phase feedback (10 %). Our study underlines the key role of albedo and air humidity in modulating the response of winter-accumulation type mountain glaciers and upland icefield-outlet glacier settings to climate.

Details

Title
Modelling glacier mass balance and climate sensitivity in the context of sparse observations: application to Saskatchewan Glacier, western Canada
Author
Kinnard, Christophe 1   VIAFID ORCID Logo  ; Larouche, Olivier 1 ; Demuth, Michael N 2 ; Menounos, Brian 3 

 Centre de Recherche sur les Interactions Bassins Versants – Écosystèmes Aquatiques (RIVE), Département des Sciences de l'Environnement, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, G8Z 4M3, Canada; Centre d'Études Nordiques (CEN), Québec, Quebec, G1V 0A6, Canada 
 Coldwater Laboratory, University of Saskatchewan, Canmore, Saskatchewan, T1W 3G1, Canada 
 Department of Geography, Earth and Environmental Sciences, University of Northern British Columbia, Prince George, British Columbia, V2N 4Z9, Canada 
Pages
3071-3099
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
19940424
e-ISSN
19940416
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2697040965
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.