Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to develop a vision-based gait recognition system for person identification. Gait is the soft biometric trait recognizable from low-resolution surveillance videos, where the face and other hard biometrics are not even extractable. The gait is a cycle pattern of human body locomotion that consists of two sequential phases: swing and stance. The gait features of the complete gait cycle, referred to as gait signature, can be used for person identification. The proposed work utilizes gait dynamics for gait feature extraction. For this purpose, the spatio temporal power spectral gait features are utilized for gait dynamics captured through sub-pixel motion estimation, and they are less affected by the subject’s appearance. The spatio temporal power spectral gait features are utilized for a quadratic support vector machine classifier for gait recognition aiming for person identification. Spatio temporal power spectral preserves the spatiotemporal gait features and is adaptable for a quadratic support vector machine classifier-based gait recognition across different views and appearances. We have evaluated the gait features and support vector machine classifier-based gait recognition on a locally collected gait dataset that captures the effect of view variance in high scene depth videos. The proposed gait recognition technique achieves significant accuracy across all appearances and views.

Details

Title
Utilizing Spatio Temporal Gait Pattern and Quadratic SVM for Gait Recognition
Author
Hajra Masood  VIAFID ORCID Logo  ; Farooq, Humera
First page
2386
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700539362
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.