Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, the usage of 360-degree videos has prevailed in various sectors such as education, real estate, medical, entertainment and more. The development of the Virtual World “Metaverse” demanded a Virtual Reality (VR) environment with high immersion and a smooth user experience. However, various challenges are faced to provide real-time streaming due to the nature of high-resolution 360-degree videos such as high bandwidth requirement, high computing power and low delay tolerance. To overcome these challenges, streaming methods such as Dynamic Adaptive Streaming over HTTP (DASH), Tiling, Viewport-Adaptive and Machine Learning (ML) are discussed. Moreover, the superiorities of the development of 5G and 6G networks, Mobile Edge Computing (MEC) and Caching and the Information-Centric Network (ICN) approaches to optimize the 360-degree video streaming are elaborated. All of these methods strike to improve the Quality of Experience (QoE) and Quality of Service (QoS) of VR services. Next, the challenges faced in QoE modeling and the existing objective and subjective QoE assessment methods of 360-degree video are presented. Lastly, potential future research that utilizes and further improves the existing methods substantially is discussed. With the efforts of various research studies and industries and the gradual development of the network in recent years, a deep fake virtual world, “Metaverse” with high immersion and conducive for daily life working, learning and socializing are around the corner.

Details

Title
360-Degree Video Bandwidth Reduction: Technique and Approaches Comprehensive Review
Author
Wong, En Sing 1 ; Nur Haliza Abdul Wahab 1   VIAFID ORCID Logo  ; Saeed, Faisal 2   VIAFID ORCID Logo  ; Alharbi, Nouf 3 

 School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia; [email protected] 
 DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK; [email protected] 
 College of Computer Science and Engineering, Taibah University, Madina 42353, Saudi Arabia; [email protected] 
First page
7581
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700547377
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.