Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Organs at risk (OARs) delineation is a crucial step of radiotherapy (RT) treatment planning workflow. Time-consuming and inter-observer variability are main issues in manual OAR delineation, mainly in the head and neck (H & N) district. Deep-learning based auto-segmentation is a promising strategy to improve OARs contouring in radiotherapy departments. A comparison of deep-learning-generated auto-contours (AC) with manual contours (MC) was performed by three expert radiation oncologists from a single center. Methods: Planning computed tomography (CT) scans of patients undergoing RT treatments for H&N cancers were considered. CT scans were processed by Limbus Contour auto-segmentation software, a commercial deep-learning auto-segmentation based software to generate AC. H&N protocol was used to perform AC, with the structure set consisting of bilateral brachial plexus, brain, brainstem, bilateral cochlea, pharyngeal constrictors, eye globes, bilateral lens, mandible, optic chiasm, bilateral optic nerves, oral cavity, bilateral parotids, spinal cord, bilateral submandibular glands, lips and thyroid. Manual revision of OARs was performed according to international consensus guidelines. The AC and MC were compared using the Dice similarity coefficient (DSC) and 95% Hausdorff distance transform (DT). Results: A total of 274 contours obtained by processing CT scans were included in the analysis. The highest values of DSC were obtained for the brain (DSC 1.00), left and right eye globes and the mandible (DSC 0.98). The structures with greater MC editing were optic chiasm, optic nerves and cochleae. Conclusions: In this preliminary analysis, deep-learning auto-segmentation seems to provide acceptable H&N OAR delineations. For less accurate organs, AC could be considered a starting point for review and manual adjustment. Our results suggest that AC could become a useful time-saving tool to optimize workload and resources in RT departments.

Details

Title
Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center
Author
Andrea D’Aviero 1 ; Re, Alessia 1 ; Catucci, Francesco 1   VIAFID ORCID Logo  ; Piccari, Danila 2 ; Votta, Claudio 2 ; Piro, Domenico 2 ; Piras, Antonio 3 ; Carmela Di Dio 1 ; Iezzi, Martina 1 ; Preziosi, Francesco 1   VIAFID ORCID Logo  ; Menna, Sebastiano 4   VIAFID ORCID Logo  ; Quaranta, Flaviovincenzo 4 ; Boschetti, Althea 1 ; Marras, Marco 1 ; Miccichè, Francesco 5 ; Gallus, Roberto 6   VIAFID ORCID Logo  ; Indovina, Luca 5   VIAFID ORCID Logo  ; Bussu, Francesco 7   VIAFID ORCID Logo  ; Valentini, Vincenzo 8 ; Cusumano, Davide 4 ; Mattiucci, Gian Carlo 9 

 Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; [email protected] (A.D.); [email protected] (A.R.); [email protected] (F.C.); [email protected] (C.V.); [email protected] (D.P.); [email protected] (C.D.D.); [email protected] (M.I.); [email protected] (F.P.); [email protected] (A.B.); [email protected] (M.M.); [email protected] (G.C.M.) 
 Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; [email protected] (A.D.); [email protected] (A.R.); [email protected] (F.C.); [email protected] (C.V.); [email protected] (D.P.); [email protected] (C.D.D.); [email protected] (M.I.); [email protected] (F.P.); [email protected] (A.B.); [email protected] (M.M.); [email protected] (G.C.M.); UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; [email protected] (F.M.); [email protected] (L.I.); [email protected] (V.V.) 
 UO Radioterapia Oncologica, Villa Santa Teresa, 90011 Bagheria, Italy; [email protected] 
 Medical Physics, Mater Olbia Hospital, 07026 Sassari, Italy; [email protected] (S.M.); [email protected] (F.Q.); [email protected] (D.C.) 
 UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; [email protected] (F.M.); [email protected] (L.I.); [email protected] (V.V.) 
 Otolaryngology, Mater Olbia Hospital, 07026 Sassari, Italy; [email protected] 
 Otolaryngology, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy; [email protected]; Dipartimento delle Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy 
 UOC Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; [email protected] (F.M.); [email protected] (L.I.); [email protected] (V.V.); Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy 
 Radiation Oncology, Mater Olbia Hospital, 07026 Olbia, Italy; [email protected] (A.D.); [email protected] (A.R.); [email protected] (F.C.); [email protected] (C.V.); [email protected] (D.P.); [email protected] (C.D.D.); [email protected] (M.I.); [email protected] (F.P.); [email protected] (A.B.); [email protected] (M.M.); [email protected] (G.C.M.); Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Roma, Italy 
First page
9057
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700607542
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.