Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metastasis detection in lymph nodes via microscopic examination of histopathological images is one of the most crucial diagnostic procedures for breast cancer staging. The manual analysis is extremely labor-intensive and time-consuming because of complexities and diversities of histopathology images. Deep learning has been utilized in automatic cancer metastasis detection in recent years. Due to the huge size of whole-slide images, most existing approaches split each image into smaller patches and simply treat these patches independently, which ignores the spatial correlations among them. To solve this problem, this paper proposes an effective spatially sensitive learning framework for cancer metastasis detection in whole-slide images. Moreover, a novel spatial loss function is designed to ensure the consistency of prediction over neighboring patches. Specifically, through incorporating long short-term memory and spatial loss constraint on top of a convolutional neural network feature extractor, the proposed method can effectively learn both the appearance of each patch and spatial relationships between adjacent image patches. With the standard back-propagation algorithm, the whole framework can be trained in an end-to-end way. Finally, the regions with high tumor probability in the resulting probability map are the metastasis locations. Extensive experiments on the benchmark Camelyon 2016 Grand Challenge dataset show the effectiveness of the proposed approach with respect to state-of-the-art competitors. The obtained precision, recall, and balanced accuracy are 0.9565, 0.9167, and 0.9458, respectively. It is also demonstrated that the proposed approach can provide more accurate detection results and is helpful for early diagnosis of cancer metastasis.

Details

Title
Spatiality Sensitive Learning for Cancer Metastasis Detection in Whole-Slide Images
Author
Zheng, Haixia  VIAFID ORCID Logo  ; Zhou, Yu; Huang, Xin
First page
2657
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700707920
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.