Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metal/polymer laminate has versatile applications in industry due to the essential roles of its constituents in controlling its mechanical behavior. Therefore, efforts to enhance a laminate’s performance should target its mechanical behavior. One of the most influencing features of the mechanical behavior of this type of thin laminate is the interface layer properties. This study concentrates on the mechanical response of thin aluminum (Al) foil deposited on a polymer substrate by calibrating its interfacial layer properties based on available uniaxial tensile tests performed on thin Al/polymer laminate. Then, taking into account the calibrated parameters for the interface layer, which leads to mimicking the real conditions of the laminate, one type of imperfection is introduced as a wavy roughness on the surface of each layer with different amplitudes to investigate its influence on the overall mechanical behavior of the laminate and its failure mode. The results highlighted that the existence of the roughness on the surface of the polymer layer reduces the maximum engineering stress of the laminate more severely compared to other conditions. As the roughness amplitude increases, the maximum stress reduces a lot. The distribution of equivalent plastic strains represents the appearance of the shear bands in the Al layer and an almost uniform distribution for the polymer layer. In the case of existing roughness on each layer, a higher amount of plastic strain accumulation occurs in the middle of the polymer layer and top corners of the thin Al layer. Due to the significant effect of interfacial layer properties to improve the maximum strength of the laminate and its final elongation, a parametric study is performed, taking into account different interfacial properties. The results indicate that laminate behavior with weaker separation properties in the interface layer is mostly unaffected by adopting higher tractions, and no change happens in the case of high separation considering weak tractions.

Details

Title
The Role of Interfacial Adhesion on the Mechanical Behavior of Thin Metal/Polymer Laminate with Surface Roughness
Author
Mahdieh Shahmardani 1 ; Mohammadi, Rafat 2   VIAFID ORCID Logo 

 Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran; Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 
 Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak 38156-88349, Iran 
First page
3131
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700755325
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.