Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasingly widespread application of UAV intelligence, the need for autonomous navigation and positioning is becoming more and more important. To solve the problem that UAV cannot perform localization in complex scenes, a new multi-source fusion framework factor graph optimization algorithm is used for UAV localization state estimation in this paper, which is based on IMU/GNSS/VO multi-source sensors. Based on the factor graph model and the iSAM incremental inference algorithm, a multi-source fusion model of IMU/GNSS/VO is established, including the IMU pre-integration factor, IMU bias factor, GNSS factor, and VO factor. Mathematical simulations and validations on the EuRoC dataset show that, when the selected sliding window size is 30, the factor graph optimization (FGO) algorithm can not only meet the requirements of real time and accuracy at the same time, but it also achieves a plug-and-play function in the event of local sensor failures. Finally, compared with the traditional federated Kalman algorithm and the adaptive federated Kalman algorithm, the positioning accuracy of the FGO algorithm in this paper is improved by 1.5–2-fold, and can effectively improve autonomous navigation system robustness and flexibility in complex scenarios. Moreover, the multi-source fusion framework in this paper is a general algorithm framework that can satisfy other scenarios and other types of sensor combinations.

Details

Title
UAV Localization Algorithm Based on Factor Graph Optimization in Complex Scenes
Author
Dai, Jun 1   VIAFID ORCID Logo  ; Liu, Songlin 2 ; Hao, Xiangyang 2 ; Ren, Zongbin 2 ; Yang, Xiao 3 

 Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China or ; School of Aerospace Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450001, China 
 Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China or 
 Dengzhou Water Conservancy Bureau, Dengzhou 474150, China 
First page
5862
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700762746
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.