Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the present study, a daily model is proposed for estimating the near-surface NO2 concentration in China, combining for the first time the Random Forest (RF) machine learning algorithm with the tropospheric NO2 columns from the TROPOspheric Monitoring Instrument (TropOMI) satellite and meteorological and NO2 data of surface sites in China for the year 2019. Furthermore, near-surface NO2 concentration data of ground sites during the COVID-19 outbreak from 1–5 February 2020 were used to verify the developed model. The daily model was verified by the ten-fold cross-validation method, revealing a coefficient of determination (R2) of 0.78 and root-mean-square error (RMSE) of 7.04 μg/m3, which are reasonable and also comparable to other published studies. In addition, our model showed that near-surface NO2 in China during the COVID-19 pandemic was significantly reduced compared with 2019, and these predictions were in good agreement with reference ground data. Our proposed model can also provide NO2 estimates for areas in western China where there are few ground monitoring sites. Therefore, all in all, our study findings suggest that the model established herein is suitable for estimating the daily NO2 concentration near the surface in China and, as such, can be used if there is a lack of surface sites and/or missing observations in some areas.

Details

Title
Near-Surface NO2 Concentration Estimation by Random Forest Modeling and Sentinel-5P and Ancillary Data
Author
Li, Meixin 1 ; Wu, Ying 2 ; Bao, Yansong 2 ; Liu, Bofan 3 ; Petropoulos, George P 4   VIAFID ORCID Logo 

 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] (M.L.); [email protected] (Y.B.); [email protected] (B.L.); Focused Photonics (Hangzhou) Inc., Hangzhou 310052, China 
 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] (M.L.); [email protected] (Y.B.); [email protected] (B.L.); School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] (M.L.); [email protected] (Y.B.); [email protected] (B.L.); Reading Academy, Nanjing University of Information Science and Technology, Nanjing 210044, China 
 Department of Geography, Harokopio University of Athens, 17671 Athens, Greece; [email protected] 
First page
3612
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2700765146
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.