Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A plant tissue culture protocol from stevia was optimized for the production of planting materials and the natural sweetener, rebaudioside A. The highest survivability (88.90% ± 5.55) of explants was achieved at 15 and 30 days after culture initiation (DACI) on Murashige and Skoog (MS) media by sterilization with 30% Clorox (5 min) and 10% Clorox (10 min), respectively. Supplementation of MS with 0.50 mg/L 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.10 mg/L zeatin produced 50% callus at 15 DACI while 1.50 mg/L 2,4-D and 0.10 mg/L zeatin at 30 DACI increased callus production to 76.67%. The highest shoot proliferation per callus was achieved with 10.00 mg/L 6-benzyl amino purine (BAP) in MS at 15 DACI (5.80) and 30 DACI (12.33). The longest shoots of 4.31 cm and 6.04 cm at 15 and 30 DACI, respectively, were produced using BAP (10.00 mg/L) and 1.00 mg/L naphthalene acetic acid (NAA). MS media (0.50 strength) induced 2.86 and 6.20 roots per shoot and produced 3.25 cm and 7.82 cm long roots at 15 and 30 DACI, respectively. Stevia grown on 0.25 MS accumulated the highest concentration of rebaudioside A (6.53%), which correlated with the expression level of its biosynthetic gene uridine-diphosphate-dependent (UDP)-glycosyltransferase (UGT76G1).

Details

Title
In Vitro Regeneration of Stevia (Stevia rebaudiana Bertoni) and Evaluation of the Impacts of Growth Media Nutrients on the Biosynthesis of Steviol Glycosides (SGs)
Author
Ghose, Asish Kumar 1 ; Siti Nor Akmar Abdullah 2   VIAFID ORCID Logo  ; Muhammad Asyraf Md Hatta 3   VIAFID ORCID Logo  ; Puteri Edaroyati Megat Wahab 4 

 Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Biotechnology Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna 6620, Bangladesh 
 Laboratory of Agronomy and Sustainable Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 
 Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 
 Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 
First page
1957
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706087850
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.