Full text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Accurate calculation of rate constants for gas-phase OH-oxidation reactions of fluorinated compounds is crucial for the understanding of atmospheric processes that are subject of the Kigali Agreement. Here, we have determined two such rate constants for two hydrofluoroketones, HFK-447mcc and HFK-465mc. The calculations were performed with a cost-effective multiconformer transition state theory protocol coupled with the constrained transition state randomization sampling method. The calculated rate constants of k(HO+HFK-447mcc)=3.1×1015cm3molecule1s1 and k(HO+HFK-465mc)=3.2×1014cm3molecule1s1 at 298.15 K imply an atmospheric lifetime of 10 years and 1 year, respectively. To our knowledge, these rate constants have never been determined experimentally or theoretically, and the similarity between the ratios of these two rate constants and of the well-studied acetone and diethyl ketone suggest the validity of our approach toward obtaining accurate rate constants and branching ratios.

Details

Title
Atmospheric Degradation of Two Hydrofluoroketones: Theoretical Rate Constants for the Gas-Phase OH-Oxidation of HFK-447mcc and HFK-465mc
Author
Luís Pedro Viegas  VIAFID ORCID Logo 
First page
1256
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706095214
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.