Full Text

Turn on search term navigation

© 2022 Rodin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A wearable body hydration sensor employing photoplethysmographic and galvanic biosensors was field evaluated using 240 human participants with equal numbers of men and women volunteers. Monitoring of water mass loss due to perspiration was performed by medical balance measurements following one of two different treadmill physical exercise regimens over 90 minutes in 15-minute intervals with intervening 10-minute rest periods. Participants wore two different models of the dehydration body monitor device mated to commercially-available smartwatches (Samsung Gear S2 and Samsung Gear Fit2). Device output was recorded by Bluetooth wireless link to a standard smartphone in 20-second blocks. Comparison of the devices with the standard measurement method (change in body mass measured by medical balance) indicated very close agreement between changes in body water mass and device output (percent normalized mean root square error averaged approximately 2% for all participants). Bland-Altman analyses of method agreement indicated that <5% of participant values fell outside of the 95% confidence interval limits of agreement and all measured value differences were normally distributed around the line of equality. The results of this first-ever field trial of a practical, wearable hydration monitor suggests that this device will be a reliable tool to aid in geriatric hydration monitoring and physical training scenarios.

Details

Title
An accurate wearable hydration sensor: Real-world evaluation of practical use
Author
Rodin, Dmitry; Contributed equally to this work with: Dmitry Rodin; Shapiro, Yair; Pinhasov, Albert; Kreinin, Anatoly; Michael Kirby Yair Shapiro; Michael Kirby Albert Pinhasov; Michael Kirby Anatoly Kreinin; Kirby, Michael  VIAFID ORCID Logo 
First page
e0272646
Section
Research Article
Publication year
2022
Publication date
Aug 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706143021
Copyright
© 2022 Rodin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.