Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Supervised learning for Unmanned Aerial Vehicle (UAVs) visual-based navigation raises the need for reliable datasets with multi-task labels (e.g., classification and regression labels). However, current public datasets have limitations: (a) Outdoor datasets have limited generalization capability when being used to train indoor navigation models; (b) The range of multi-task labels, especially for regression tasks, are in different units which require additional transformation. In this paper, we present a Hull Drone Indoor Navigation (HDIN) dataset to improve the generalization capability for indoor visual-based navigation. Data were collected from the onboard sensors of a UAV. The scaling factor labeling method with three label types has been proposed to overcome the data jitters during collection and unidentical units of regression labels simultaneously. An open-source Convolutional Neural Network (i.e., DroNet) was employed as a baseline algorithm to retrain the proposed HDIN dataset, and compared with DroNet’s pretrained results on its original dataset since we have a similar data format and structure to the DroNet dataset. The results show that the labels in our dataset are reliable and consistent with the image samples.

Details

Title
The HDIN Dataset: A Real-World Indoor UAV Dataset with Multi-Task Labels for Visual-Based Navigation
Author
Chang, Yingxiu 1 ; Cheng, Yongqiang 1   VIAFID ORCID Logo  ; Murray, John 2 ; Huang, Shi 3 ; Shi, Guangyi 4 

 Department of Computer Science and Technology, University of Hull, Hull HU6 7RX, UK 
 Faculty of Technology, University of Sunderland, Sunderland SR6 0DD, UK 
 Department of Engineering, University of Hull, Hull HU6 7RX, UK 
 School of Software & Microelectronics, Peking University, Beijing 102600, China 
First page
202
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706170945
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.