Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to improve the microwave absorption performance of absorbing materials, the composite foam absorbing materials with different multi-walled carbon nanotube (MWCNT) contents were prepared using polyurethane foam as the substrate and MWCNTs and flaked carbonyl iron powder as absorbers. The electromagnetic properties of the materials were characterized and analyzed. Then, CST electromagnetic simulation software was used to simulate the electromagnetic shielding effect of absorbing materials on mechatronics products under a strong electromagnetic irradiation environment, and, finally, it was verified by irradiation experiment. The results show that the materials have good microwave absorption properties, in which the composites containing 1.5 wt.% MWCNTs exhibit good microwave absorption properties. The minimum reflectivity reaches −29 dB when the thickness is 3 mm and −15.6 dB when the thickness is 1.5 mm, with a bandwidth of 5.7 GHz for reflectivity less than −10 dB. The good microwave absorption performance of the material is due to the synergistic effect of MWCNTs particles and good impedance matching. The simulation and experimental results show that the mechatronics product with absorbing materials can protect against strong electromagnetic interference and ensure the normal operation of the mechatronics product circuits.

Details

Title
Microwave Absorption Properties of Multi-Walled Carbon Nanotubes/Carbonyl Iron Particles/Polyurethane Foams
Author
Huang, Xuegong; Yu, Danping  VIAFID ORCID Logo  ; Wang, Simin
First page
5690
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706251392
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.