Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The vacuum membrane distillation (VMD) process was applied to separate ethanol from a simulated ethanol–water solution using a commercial polytetrafluoroethylene (PTFE) membrane. The presence of ethanol in the ethanol–water solution with a 2 wt.% ethanol concentration at a temperature above 40 °C during the MD process may result in membrane failure due to an increase in the chance of the PTFE membrane wetting at high temperatures. Therefore, the operating temperature in this study was not higher than 35 °C, with an initial ethanol concentration up to 10 wt.%. This work focuses on optimizing the VMD operating parameters using the Taguchi technique based on an analysis of variance (ANOVA). It was found that the feed temperature was the most-affected parameter, leading to a significant increase in the permeation flux of the PTFE membrane. Our results also showed that the permeate flux was reported at about 24.145 kg/m2·h, with a separation factor of 8.6 of the permeate under the operating conditions of 2 wt.%, 30 °C, 60 mm Hg(abs), and 0.6 L/min feed (concentration, temperature, permeate vacuum pressure, and flow rate, respectively). The initial feed concentration, vacuum pressure, and feed flow rate have a lower impact on the permeation flux.

Details

Title
Ethanol Separation from an Ethanol–Water Solution Using Vacuum Membrane Distillation
Author
Nassif, Abeer G 1 ; Ibrahim, Salah S 1   VIAFID ORCID Logo  ; Hasan Sh Majdi 2 ; Alsalhy, Qusay F 1   VIAFID ORCID Logo 

 Membrane Technology Research Unit, Department of Chemical Engineering, University of Technology-Iraq, Alsinaa Street, Baghdad 10066, Iraq 
 Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq 
First page
807
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706269883
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.