Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An integrated membrane bioreactor (MBR) with synthetic RO membrane cleaning wastewater from a thermal power plant was used to study the long-term operating characteristics, membrane fouling, and cleaning of membrane fouling. The results show that the MBR had a great removal effect on mainly an organic pollutant (citric acid) with an average of 98.4% rejection, and the concentration of organics in the effluent also achieved “Discharge standard of pollutants for municipal wastewater treatment plant” (GB12/599-2015). The optimal operating conditions were as follows: the membrane flux was 8 L/(m2·h); the hydraulic retention time (HRT) was 4 h; the sludge retention time (SRT) was 15 d, and the pH value was 6~7. A membrane fouling analysis showed that the resistance of the cake layer and the concentration polarization were the main components of membrane fouling. When the specific flux (SF) decreased to 10 L/(h·m2 mH2O), the membrane module was cleaned by tap water and then soaked in 0.05 wt% hydrochloric acid (HCl) and 3000 mg/L sodium hypochlorite (NaOCl) for 1 h and 3 h, respectively. Finally, the membrane flux could be recovered to 84.9% compared to the new membrane.

Details

Title
Treatment of Membrane Cleaning Wastewater from Thermal Power Plant Using Membrane Bioreactor
Author
Zhang, Wenxiu; Xu, Xiaoyi; Zhang, Guanghui; Jin, Shengjiang; Dong, Lihua; Gu, Ping
First page
755
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706272465
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.