Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intimate knowledge of the mineralogical assembly of the Yushui complex ore rich in Cu, Pb, and Ag is essential if efficient separation processing is to be conducted. With the aid of testing instruments, such as scanning electron microscope (SEM), X-ray diffractometer (XRD), and mineral liberation analyzer (MLA) combined with energy-dispersive X-ray analysis (EDX), the texture, such as the size distribution, dissemination, and association of the minerals, was investigated. The results demonstrate that the ore consists of 35 categories of minerals, assaying Cu 7.99%, Pb 9.39%, and Zn 1.96% in the forms of chalcopyrite, galena, and sphalerite, respectively, and silver assaying 157.9 g/t is closely associated with these sulfides; sulfides are present in amounts of 80.31% of the total, traditional gangues only 19.69%, and pyrite as a Cu-Pb-Zn-Ag carrier mineral up to 44.80%. According to the characteristics of the ore, the innovative process of flash copper flotation in weak acidic pulp and lead flotation, followed by further copper recovery, was developed. The closed-circuit test shows that copper concentrate assays Cu 16.33%, Pb 7.98%, Ag 242 g/t at Cu recovery of 86.67%; lead concentrate contains Pb 46.23%, Cu 3.75%, Ag 165 g/t at Pb recovery of 56.84%; total recovery of silver in both concentrates is 75.57%.

Details

Title
Mineralogy and Innovative Flash Flotation Separation of Cu-Pb-Zn Polymetallic Ore in Weak Acidic Pulp
Author
Fan, Feng 1 ; Liu, Wenbiao 2 ; Liu, Siqing 3 ; Chen, Siyu 1 

 The State Key Laboratory of Comprehensive Utilization of Complex Non-Ferrous Metals, Kunming University of Science and Technology, Kunming 650093, China 
 Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China; R & D Center, Yunnan Yuntianhua Co., Ltd., Kunming 650228, China 
 Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China 
First page
1041
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2075163X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706281486
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.