Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The industrial revolution resulted in the contamination of natural water resources. Therefore, it is necessary to save and recover the natural water resources. In this regard, polymer-based composites have attracted the scientific community for their application in wastewater treatment. Herein, molybdenum disulfide composites with a mix phase of copper, copper oxide and graphene (MoS2-Cu/CuO@GN) were synthesized through the hydrothermal method. Methylene blue (MB) was degraded by around 93.8% within the 30 min in the presence of MoS2-Cu/CuO@GN under visible light. The degradation efficiency was further enhanced to 98.5% with the addition of H2O2 as a catalyst. The photocatalytic degradation efficiency of pure MoS2, MoS2-Cu/CuO and MoS2-Cu/CuO@GN were also investigated under the same experimental conditions. The structural analysis endorses the presence of the Cu/CuO dual phase in MoS2. The charge recombination ratio and band gap of MoS2-Cu/CuO@GN were also investigated in comparison to pure MoS2 and MoS2-Cu/CuO. The chemical states, the analysis of C1s, O1s, Mo3d and Cu2p3, were also analyzed to explore the possible interaction among the present elements. The surface morphology confirms the existence of Cu/CuO and GN to MoS2.

Details

Title
MoS2-Cu/CuO@graphene Heterogeneous Photocatalysis for Enhanced Photocatalytic Degradation of MB from Water
Author
Jilani, Asim 1   VIAFID ORCID Logo  ; Melaibari, Ammar A 2   VIAFID ORCID Logo 

 Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
 Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
First page
3259
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706332423
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.