Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Secondary metabolites/toxins produced by Purpeocillium lilacinum (Hypocreales; Phiocordycipitaceae), a well-known insect pathogen, can be used for the management of different insect pests. We report the lethal and sublethal effects of cyclosporin C (a toxin produced by P. lilacinum) against a major vegetable pest, Plutella xylostella, at specific organismal (feeding rate, larval growth, adult emergence, fecundity, and adult longevity) and sub-organismal levels (changes in antioxidant and neurophysiological enzyme activities). The toxicity of cyclosporin C against different larval instars of P. xylostella increased with increasing concentrations of the toxin and the maximum percent mortality rates for different P. xylostella larval instars at different times were observed for the 300 µg/mL cyclosporin C treatment, with an average mortality rate of 100% for all larval instars. The median lethal concentrations (LC50) of cyclosporin C against the first, second, third, and fourth larval instars of P. xylostella 72 h post-treatment were 78.05, 60.42, 50.83, and 83.05 μg/mL, respectively. Different concentrations of cyclosporin C caused a reduction in the average leaf consumption and average larval weight. Different life history parameters, such as the pupation rate (%), adult emergence (%), female fecundity, and female longevity were also inhibited when different concentrations of cyclosporin C were applied topically. The cyclosporin C concentrations inhibited the activities of different detoxifying (glutathione S-transferase, carboxylesterase, and acetylcholinesterase) and antioxidant enzyme (superoxide dismutase, catalase, and peroxidase) activities of P. xylostella when compared to the control. These findings can serve as baseline information for the development of cyclosporin C as an insect control agent, although further work on mass production, formulation, and field application is still required.

Details

Title
Lethal and Sublethal Toxicity Assessment of Cyclosporin C (a Fungal Toxin) against Plutella xylostella (L.)
Author
Wu, Jianhui 1 ; Zhang, Xiaochen 1 ; Muhammad Hamid Bashir 2 ; Ali, Shaukat 1 

 Key Laboratory of Bio-Pesticide Innovation and Application, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; [email protected] (J.W.); [email protected] (X.Z.); Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou 510642, China 
 Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan; [email protected] 
First page
514
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726651
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706445136
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.