Full Text

Turn on search term navigation

© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In 2019–2020, Australia experienced its largest wildfire season on record. Smoke covered hundreds of square kilometers across the southeastern coast and reached the site of the COALA-2020 (Characterizing Organics and Aerosol Loading over Australia) field campaign in New South Wales. Using a subset of nighttime observations made by a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), we calculate emission ratios (ERs) and factors (EFs) for 15 volatile organic compounds (VOCs). We restrict our analysis to VOCs with sufficiently long lifetimes to be minimally impacted by oxidation over the 8 h between when the smoke was emitted and when it arrived at the field site. We use oxidized VOC to VOC ratios to assess the total amount of radical oxidation: maleic anhydride / furan to assess OH oxidation, and (cis-2-butenediol + furanone) / furan to assess NO3 oxidation. We examine time series of O3 and NO2 given their closely linked chemistry with wildfire plumes and observe their trends during the smoke event. Then we compare ERs calculated from the freshest portion of the plume to ERs calculated using the entire nighttime period. Finding good agreement between the two, we are able to extend our analysis to VOCs measured in more chemically aged portions of the plume. Our analysis provides ERs and EFs for six compounds not previously reported for temperate forests in Australia: acrolein (a compound with significant health impacts), methyl propanoate, methyl methacrylate, maleic anhydride, benzaldehyde, and creosol. We compare our results with two studies in similar Australian biomes, and two studies focused on US temperate forests. We find over half of our EFs are within a factor of 2.5 relative to those presented in Australian biome studies, with nearly all within a factor of 5, indicating reasonable agreement. For US-focused studies, we find similar results with over half our EFs within a factor of 2.5, and nearly all within a factor of 5, again indicating reasonably good agreement. This suggests that comprehensive field measurements of biomass burning VOC emissions in other regions may be applicable to Australian temperate forests. Finally, we quantify the magnitude attributable to the primary compounds contributing to OH reactivity from this plume, finding results comparable to several US-based wildfire and laboratory studies.

Details

Title
Measurement report: Observations of long-lived volatile organic compounds from the 2019–2020 Australian wildfires during the COALA campaign
Author
Mouat, Asher P 1 ; Paton-Walsh, Clare 2   VIAFID ORCID Logo  ; Simmons, Jack B 2 ; Ramirez-Gamboa, Jhonathan 2 ; Griffith, David W T 2   VIAFID ORCID Logo  ; Kaiser, Jennifer 3 

 Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA 
 School of Earth, Atmospheric, and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia 
 Department of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA; Department of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA 
Pages
11033-11047
Publication year
2022
Publication date
2022
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2708160489
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.