Full Text

Turn on search term navigation

© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Deep neural networks are showing impressive results in different medical image classification tasks. However, for real-world applications, there is a need to estimate the network’s uncertainty together with its prediction.

Objective: In this review, we investigate in what form uncertainty estimation has been applied to the task of medical image classification. We also investigate which metrics are used to describe the effectiveness of the applied uncertainty estimation

Methods: Google Scholar, PubMed, IEEE Xplore, and ScienceDirect were screened for peer-reviewed studies, published between 2016 and 2021, that deal with uncertainty estimation in medical image classification. The search terms “uncertainty,” “uncertainty estimation,” “network calibration,” and “out-of-distribution detection” were used in combination with the terms “medical images,” “medical image analysis,” and “medical image classification.”

Results: A total of 22 papers were chosen for detailed analysis through the systematic review process. This paper provides a table for a systematic comparison of the included works with respect to the applied method for estimating the uncertainty.

Conclusions: The applied methods for estimating uncertainties are diverse, but the sampling-based methods Monte-Carlo Dropout and Deep Ensembles are used most frequently. We concluded that future works can investigate the benefits of uncertainty estimation in collaborative settings of artificial intelligence systems and human experts.

International Registered Report Identifier (IRRID): RR2-10.2196/11936

Details

Title
Uncertainty Estimation in Medical Image Classification: Systematic Review
Author
Kurz, Alexander  VIAFID ORCID Logo  ; Hauser, Katja  VIAFID ORCID Logo  ; Mehrtens, Hendrik Alexander  VIAFID ORCID Logo  ; Krieghoff-Henning, Eva  VIAFID ORCID Logo  ; Hekler, Achim  VIAFID ORCID Logo  ; Kather, Jakob Nikolas  VIAFID ORCID Logo  ; Fröhling, Stefan  VIAFID ORCID Logo  ; Christof von Kalle  VIAFID ORCID Logo  ; Titus, Josef Brinker  VIAFID ORCID Logo 
First page
e36427
Publication year
2022
Publication date
Aug 2022
Publisher
JMIR Publications
e-ISSN
22919694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2708661477
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.