It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the manufacturing industry, all things related to a product manufactured are generated and managed with a three-dimensional (3D) computer-aided design (CAD) system. CAD models created in a 3D CAD system are represented as geometric and topological information for exchange between different CAD systems. Although 3D CAD models are easy to use for product design, it is not suitable for direct use in manufacturing since information on machining features is absent. This study proposes a novel deep learning model to recognize machining features from a 3D CAD model and detect feature areas using gradient-weighted class activation mapping (Grad-CAM). To train the deep learning networks, we construct a dataset consisting of single and multi-feature. Our networks comprised of 12 layers classified the machining features with high accuracy of 98.81% on generated datasets. In addition, we estimated the area of the machining feature by applying Grad-CAM to the trained model. The deep learning model for machining feature recognition can be utilized in various fields such as 3D model simplification, computer-aided engineering, mechanical part retrieval, and assembly component identification.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Korea University, School of Mechanical Engineering, Seoul, Republic of Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678)