Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Statistical Learning Theory (SLT) plays an important role in prediction estimation and machine learning when only limited samples are available. At present, determining how many samples are necessary under given circumstances for prediction accuracy is still an unknown. In this paper, the medical diagnosis on lung cancer is taken as an example to solve the problem. Invasive adenocarcinoma (IA) is a main type of lung cancer, often presented as ground glass nodules (GGNs) in patient’s CT images. Accurately discriminating IA from non-IA based on GGNs has important implications for taking the right approach to treatment and cure. Support Vector Machine (SVM) is an SLT application and is used to classify GGNs, wherein the interrelation between the generalization and the lower bound of necessary sampling numbers can be effectively recovered. In this research, to validate the interrelation, 436 GGNs were collected and labeled using surgical pathology. Then, a feature vector was constructed for each GGN sample through the fully connected layer of AlexNet. A 10-dimensional feature subset was then selected with the p-value calculated using Analysis of Variance (ANOVA). Finally, four sets with different sample sizes were used to construct an SVM classifier. Experiments show that a theoretical estimate of minimum sample size is consistent with actual values, and the lower bound on sample size can be solved under various generalization requirements.

Details

Title
Minimum Sample Size Estimate for Classifying Invasive Lung Adenocarcinoma
Author
Ma, Chenchen; Yue, Shihong
First page
8469
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711271507
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.