Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The locomotor behavior of creatures in nature can bring a lot of inspiration for the fabrication of soft actuators. In this paper, we fabricated a bionic light-driven swimming soft robot that can perform grasping of tiny objects and achieve the task of object transfer. By adding carbon nanotubes (CNTs), the temperature-sensitive hydrogels can be endowed with light-responsive properties. The fabricated composite hydrogel structure can control the contraction and expansion of volume by light, which is similar to the contraction and diastole behavior of muscles. The oscillation of the fish tail and the grasping action of the normally closed micromanipulator can be achieved by the control of the irradiation of the xenon light source. The bending of the bionic arm can be controlled by the irradiation of a near-infrared (NIR) laser, which transforms the spatial position and posture of the micromanipulator. The proposed scheme is feasible for miniaturized fabrication and application of flexible actuators. This work provides some important insights for the study of light-driven microrobots and light-driven flexible actuators.

Details

Title
A Multifunctional Light-Driven Swimming Soft Robot for Various Application Scenarios
Author
Wang, Zhen 1 ; Shi, Dongni 1 ; Wang, Xiaowen 1 ; Chen, Yibao 1 ; Zheng, Yuan 1 ; Li, Yan 1 ; Ge, Zhixing 2 ; Yang, Wenguang 1   VIAFID ORCID Logo 

 School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China 
 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China 
First page
9609
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711440738
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.