Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Maneuvering extended object tracking is a new research field due to the rapid development of modern sensor technology. Multiple measurements may be resolved from different unknown sources on an object by using a high-resolution radar. In this case, the object should be regarded as an extended one with object extension, e.g., its shape may be described by the star-convex random hypersurface model. This model is usually specified by a one-dimensional radial function. However, the divergence of the shape estimation and a high error of the kinematic state estimation are likely to occur when an extended object maneuvers. This is because the radial function may take a negative value after Fourier series expansion, which leads to unpredictable estimation results. Unfortunately, the model itself is unable to solve this problem via the subsequent iterations. In this paper, we proposed a modified shape estimation approach to track an extended object with a star-convex random hypersurface model based on minimum cosine distance. Both the extension state and kinematic state at the current time are reinitialized once the radial function takes a negative value. Moreover, a mathematical model was constructed by using the principle of minimum cosine distance, so as to obtain more reasonable weight distribution coefficients for the correction of the extension state. Simulation results in different scenarios demonstrated the effectiveness of the proposed tracking approach.

Details

Title
Maneuvering Extended Object Tracking with Modified Star-Convex Random Hypersurface Model Based on Minimum Cosine Distance
Author
Sun, Lifan 1 ; Zhang, Jinjin 2 ; Yu, Haofang 3 ; Fu, Zhumu 2 ; He, Zishu 4 

 School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China; School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
 School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China 
 School of Automation, Nanjing University of Technology, Nanjing 210094, China 
 School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 
First page
4376
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711473667
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.