Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Automatic modulation classification (AMC) plays a fundamental role in common communication systems. Existing clustering models typically handle fewer modulation types with lower classification accuracies and more computational resources. This paper proposes a hierarchical self-organizing map (SOM) based on a feature space composed of high-order cumulants (HOC) and amplitude moment features. This SOM with two stacked layers can identify intrinsic differences among samples in the feature space without the need to set thresholds. This model can roughly cluster the multiple amplitude-shift keying (MASK), multiple phase-shift keying (MPSK), and multiple quadrature amplitude keying (MQAM) samples in the root layer and then finely distinguish the samples with different orders in the leaf layers. We creatively implement a discrete transformation method based on modified activation functions. This method causes MQAM samples to cluster in the leaf layer with more distinct boundaries between clusters and higher classification accuracies. The simulation results demonstrate the superior performance of the proposed hierarchical SOM on AMC problems when compared with other clustering models. Our proposed method can manage more categories of modulation signals and obtain higher classification accuracies while using fewer computational resources.

Details

Title
Automatic Modulation Classification for MASK, MPSK, and MQAM Signals Based on Hierarchical Self-Organizing Map
Author
Li, Zerun; Wang, Qinglin  VIAFID ORCID Logo  ; Zhu, Yufei  VIAFID ORCID Logo  ; Xing, Zuocheng
First page
6449
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711510208
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.