Abstract

Cuprous oxide (Cu2O) is a promising p-type semiconductor material for many applications. So far, the lowest resistivity values are obtained for films deposited by physical methods and/or at high temperatures (~1000 °C), limiting their mass integration. Here, Cu2O thin films with ultra-low resistivity values of 0.4 Ω.cm were deposited at only 260 °C by atmospheric pressure spatial atomic layer deposition, a scalable chemical approach. The carrier concentration (7.1014−2.1018 cm−3), mobility (1–86 cm2/V.s), and optical bandgap (2.2–2.48 eV) are easily tuned by adjusting the fraction of oxygen used during deposition. The properties of the films are correlated to the defect landscape, as revealed by a combination of techniques (positron annihilation spectroscopy (PAS), Raman spectroscopy and photoluminescence). Our results reveal the existence of large complex defects and the decrease of the overall defect concentration in the films with increasing oxygen fraction used during deposition.

Cu2O offers a lot of potential for several optoelectronic applications. Here, the authors present a low temperature, fast and scalable approach to deposit Cu2O films with low resistivity, which is correlated to the defect landscape in the material.

Details

Title
Chemical deposition of Cu2O films with ultra-low resistivity: correlation with the defect landscape
Author
Sekkat, Abderrahime 1   VIAFID ORCID Logo  ; Liedke, Maciej Oskar 2   VIAFID ORCID Logo  ; Nguyen, Viet Huong 3 ; Butterling, Maik 2   VIAFID ORCID Logo  ; Baiutti, Federico 4   VIAFID ORCID Logo  ; Sirvent Veru, Juan de Dios 4   VIAFID ORCID Logo  ; Weber, Matthieu 5 ; Rapenne, Laetitia 5 ; Bellet, Daniel 5 ; Chichignoud, Guy 6 ; Kaminski-Cachopo, Anne 7 ; Hirschmann, Eric 2   VIAFID ORCID Logo  ; Wagner, Andreas 2   VIAFID ORCID Logo  ; Muñoz-Rojas, David 5   VIAFID ORCID Logo 

 Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France (GRID:grid.463753.0) (ISNI:0000 0004 0386 4138); Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LaHC, Grenoble, France (GRID:grid.462157.3) (ISNI:0000 0004 0382 8823); Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France (GRID:grid.5676.2) (ISNI:0000000417654326) 
 Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany (GRID:grid.40602.30) (ISNI:0000 0001 2158 0612) 
 Phenikaa University, Faculty of Materials Science and Engineering, Hanoi, Vietnam (GRID:grid.511102.6) (ISNI:0000 0004 8341 6684) 
 Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Barcelona, Spain (GRID:grid.424742.3) (ISNI:0000 0004 1768 5181) 
 Univ. Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, France (GRID:grid.463753.0) (ISNI:0000 0004 0386 4138) 
 Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France (GRID:grid.5676.2) (ISNI:0000000417654326) 
 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, IMEP-LaHC, Grenoble, France (GRID:grid.462157.3) (ISNI:0000 0004 0382 8823) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2712118406
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.