Full Text

Turn on search term navigation

© 2022 Hubálovský et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, deepfake technology has become a popularly used technique for swapping faces in images or videos that create forged data to mislead society. Detecting the originality of the video is a critical process due to the negative pattern of the image. In the detection of forged images or videos, various image processing techniques were implemented. Existing methods are ineffective in detecting new threats or false images. This article has proposed You Only Look Once–Local Binary Pattern Histogram (YOLO-LBPH) to detect fake videos. YOLO is used to detect the face in an image or a frame of a video. The spatial features are extracted from the face image using a EfficientNet-B5 method. Spatial feature extractions are fed as input in the Local Binary Pattern Histogram to extract temporal features. The proposed YOLO-LBPH is implemented using the large scale deepfake forensics (DF) dataset known as CelebDF-FaceForensics++(c23), which is a combination of FaceForensics++(c23) and Celeb-DF. As a result, the precision score is 86.88% in the CelebDF-FaceForensics++(c23) dataset, 88.9% in the DFFD dataset, 91.35% in the CASIA-WebFace data. Similarly, the recall is 92.45% in the Celeb-DF-Face Forensics ++(c23) dataset, 93.76% in the DFFD dataset, and 94.35% in the CASIA-Web Face dataset.

Details

Title
Evaluation of deepfake detection using YOLO with local binary pattern histogram
Author
Hubálovský, Štěpán; Trojovský, Pavel; Bacanin, Nebojsa; Venkatachalam, K
Publication year
2022
Publication date
Sep 13, 2022
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2713847814
Copyright
© 2022 Hubálovský et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.