It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Considering the increase of natural resource use, humanity is facing the problem of resource depletion. The building sector is a major consumer of resources. The most consumed resources are mineral and metal resources. Thereby, the identification, and then optimisation, of mineral and metal resource use in the building sector appears as a necessity. One tool to quantify the use of those resources is LCA. Currently, several authors develop absolute environmental sustainability assessment (AESA) methods, combined with LCA, to compare the pressures of the studied project with the global carrying capacity of the planet. However, most of the AESA approaches do not actually include normalization factors about the use of resources, and in particular mineral and metal resources. Besides, the mainly used LCIA characterization methods of mineral and metal resources present several limits when applied to Circular Economy projects within the building sector. Thereby, the goal of this research project is to answer the following question: Can the consumption of mineral and metal resources for a given building project be considered sustainable? To answer this question, a methodology was developed. This methodology is inspired by the AESA approach by proposing a sustainable resource budget for each mineral or metal substance and will combine the MFA methods to the LCA method to calculate sustainability indicators for each mineral and metal resource. The Mineral and Metal absOlute Sustainability Assessment (MiMOSA) method integrates the circular economy actions and considers an appropriate spatial scale for each resource and will be presented in this paper.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Mines Saint-Etienne, Univ Lyon, CNRS, Univ Jean Monnet, Univ Lumière Lyon 2, Univ Lyon 3 Jean Moulin, ENS Lyon, ENTPE, ENSA Lyon, UMR 5600 EVS, Institut Henri Fayol , F - 42023 Saint-Etienne , France; Université Paris-Est, Centre Scientifique et Technique du Bâtiment , 24 rue Joseph Fourier, Saint-Martin-d’Hères, 38400 , France
2 Mines Saint-Etienne, Univ Lyon, CNRS, Univ Jean Monnet, Univ Lumière Lyon 2, Univ Lyon 3 Jean Moulin, ENS Lyon, ENTPE, ENSA Lyon, UMR 5600 EVS, Institut Henri Fayol , F - 42023 Saint-Etienne , France
3 Université Paris-Est, Centre Scientifique et Technique du Bâtiment , 24 rue Joseph Fourier, Saint-Martin-d’Hères, 38400 , France





