Abstract
Background
Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), which could induce bloody stool, diarrhea, colon atrophy and eventually lead to colorectal cancer. The conventional daily oral administration of drugs only relieve the inflammatory response of colon in the short term, Biological agents such as antibody drugs has proven its efficiency in inhibiting colitis, while the low drug bioavailability means that large doses of antibodies are required, ultimately causing systemic toxicity. Small interfering RNA (siRNA) has significant advantages over antibody drugs in terms of safety and efficacy, and it have been widely applied as potential candidates for a variety of inflammation-related diseases. However, oral delivery of siRNA fails to overcome the degradation of the gastrointestinal environment to produce a significant therapeutic effect in ulcerative colitis. Herein, we design the hybrid delivery system that the siRNA loaded MOF encapsulated in the sodium alginate particles to overcome the barriers in the oral process.
Results
The hybrid delivery system (SA@MOF-siRNATNFα) was successfully constructed, and it could not only survive the low pH environment in the stomach and small intestine, but also taken up more by inflammatory macrophages, as well as released much more MOF-siRNATNFα. Moreover, SA@MOF-siRNATNFα tended to enriched and infiltrated into local colon tissues. As a result, SA@MOF-siRNATNFα significantly reduced the progression of colitis, of which the treated mice did not experience significant weight loss, bloody stools and diarrhea.
Conclusion
We confirmed that the formulation of hydrogel–metal-organic framework hybrids could improve the protection of incorporated payload in the gastric and early small intestine, enhancing the delivery of MOF-siRNA to colon.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer




