It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Karst-adapted plant, Lysionotus pauciflours accumulates special secondary metabolites with a wide range of pharmacological effects for surviving in drought and high salty areas, while researchers focused more on their environmental adaptations and evolutions. Nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone), the main active component in L. pauciflours, has unique bioactivity of such as anti-inflammatory, anti-tubercular, and anti-tumor or cancer. Complex decoration of nevadensin, such as hydroxylation and glycosylation of the flavone skeleton determines its diversity and biological activities. The lack of omics data limits the exploration of accumulation mode and biosynthetic pathway. Herein, we integrated transcriptomics, metabolomics, and microbial recombinant protein system to reveal hydroxylation and glycosylation involving nevadensin biosynthesis in L. pauciflours.
Results
Up to 275 flavonoids were found to exist in L. pauciflorus by UPLC-MS/MS based on widely targeted metabolome analysis. The special flavone nevadensin (5,7-dihydroxy-6,8,4'-trimethoxyflavone) is enriched in different tissues, as are its related glycosides. The flavonoid biosynthesis pathway was drawn based on differential transcripts analysis, including 9 PAL, 5 C4H, 8 4CL, 6 CHS, 3 CHI, 1 FNSII, and over 20 OMTs.
Total 310 LpCYP450s were classified into 9 clans, 36 families, and 35 subfamilies, with 56% being A-type CYP450s by phylogenetic evolutionary analysis. According to the phylogenetic tree with AtUGTs, 187 LpUGTs clustered into 14 evolutionary groups (A-N), with 74% being E, A, D, G, and K groups.
Two LpCYP82D members and LpUGT95 were functionally identified in Saccharomyces cerevisiae and Escherichia coli, respectively. CYP82D-8 and CYP82D-1 specially hydroxylate the 6- or 8-position of A ring in vivo and in vitro, dislike the function of F6H or F8H discovered in basil which functioned depending on A-ring substituted methoxy. These results refreshed the starting mode that apigenin can be firstly hydroxylated on A ring in nevadensin biosynthesis. Furthermore, LpUGT95 clustered into the 7-OGT family was verified to catalyze 7-O glucosylation of nevadensin accompanied with weak nevadensin 5-O glucosylation function, firstly revealed glycosylation modification of flavones with completely substituted A-ring.
Conclusions
Metabolomic and full-length transcriptomic association analysis unveiled the accumulation mode and biosynthetic pathway of the secondary metabolites in the karst-adapted plant L. pauciflorus. Moreover, functional identification of two LpCYP82D members and one LpUGT in microbe reconstructed the pathway of nevadensin biosynthesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer