It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Avian coccidiosis is an important parasitic disease that has serious adverse effects on the global poultry industry. The extensive use of anticoccidial drugs has resulted in an increase in drug resistance. Ethanamizuril (EZL) is a novel triazine with high anticoccidial activity.
Methods
We compared oocyst production and sporulation between EZL-sensitive (S) and EZL-resistant Eimeria tenella strains (R10 and R200) and used label-free quantitative proteomics to identify differentially expressed proteins (DEPs) between these strains.
Results
We generated two EZL-resistant E. tenella strains: strain R10, which was induced using a constant dose of 10 mg EZL/kg poultry feed, and strain R200, which was generated by gradually increasing the EZL dosage to 200 mg EZL/kg poultry feed. With an increase in resistance, the total oocyst output decreased, but the percentage of sporulation did not change significantly. We identified a total of 7511 peptides and 1282 proteins, and found 152 DEPs in the R10 strain versus the S strain, 426 DEPs in the R200 strain versus the S strain and 494 DEPs in the R200 strain versus the R10 strain. When compared with the S strain, 86 DEPs were found to have consistent trends in both resistant strains. The DEPs were primarily involved in ATP and GTP binding, invasion, and membrane components. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the DEPs suggested that they are involved in transcription and translation processes. Protein–protein interaction network analysis of the 86 DEPs showed that 10 proteins were hubs in the functional interaction network (≥ 8 edges) and five of them were ribosomal proteins.
Conclusions
The results of the present study indicate that the resistance mechanisms of E. tenella against EZL might be related to the transcriptional and translational processes, especially in the factors that inhibit the growth of parasites. The DEPs found in this study provide new insights into the resistance mechanisms of E. tenella against EZL. Further research on these potential targets holds promise for new chemotherapeutic approaches for controlling E. tenella infections.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer