Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multidrug resistance is commonly acquired by transferring DNA from one bacterium to another. However, the mechanisms that enhance the acquisitions of foreign genes are poorly understood, as well as the dynamics of their transmission between hosts in different environments. Here, genomic approaches were applied to evaluate the enrichment of the S. aureus chromosome with resistance traits in groups of genomes with or without anti-restriction genes and to analyze some evolutionary aspects of these acquisitions. Furthermore, the role played by an anti-restriction gene in improving multiresistance in MRSA was investigated by molecular cloning. A strong association was observed between the presence of anti-restriction gene homologs and patterns of multidrug resistance. Human isolates, mainly ST239-SCCmecIII, carry ardA-H1, and from animal sources, mainly CC398, carry ardA-H2. Increased DNA transfer was observed for clones that express the ardA-H1 allele, corroborating its role in promoting gene transfer. In addition, ardA-H1 was expressed in the dsDNA format in the BMB9393 strain. The evolution of successful multidrug-resistant MRSA lineages of the ST239 and ST398 was initiated not only by the entry of the mec cassette but also by the acquisition of anti-restriction gene homologs. Understanding the mechanisms that affect DNA transfer may provide new tools to control the spread of drug resistance.

Details

Title
Anti-Restriction Gene Homologs Are Highly Represented in Methicillin-Resistant and Multidrug-Resistant Staphylococcus aureus ST239 and ST398: Implications for Resistance Gene Acquisitions
Author
Nascimento Santos Silva, Deborah 1 ; Beltrame, Cristiana Ossaille 1   VIAFID ORCID Logo  ; Nunes Botelho, Ana Maria 1 ; Caroline Lopes Martini 1   VIAFID ORCID Logo  ; Matheus Assis Côrtes Esteves 1 ; Isabella Alvim Guedes 2   VIAFID ORCID Logo  ; Dardenne, Laurent Emmanuel 2   VIAFID ORCID Logo  ; Sá Figueiredo, Agnes Marie 1   VIAFID ORCID Logo 

 Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil 
 Laboratório Nacional de Computação Científica, Ministério de Ciências, Tecnologia e Inovações, Avenida Getúlio Vargas 333, Quitandinha, Petrópolis 25651-075, RJ, Brazil 
First page
1217
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716479600
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.