Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Currently, knowledge on chaos has developed rapidly, and the link between cancer and “genomic chaos” seems obvious. Hopes for a deeper understanding of cancer, allowing cancer modeling, therefore relate to the meaning of the term “chaos”. It has many meanings, however. Chaos theory and medicine are conceptually quite distant, requiring the comparison and agreement of terms. This article was written by three authors whose fields cover both medical problems and complex dynamic networks suitable for modeling cancer, including chaotic phenomena. The article provides, first of all, a coherent, common interpretative basis linking chaos with modeling tools, which should significantly facilitate teams of specialists from various fields to undertake specific work on simulating cancer-related phenomena.

Abstract

In the search of theoretical models describing cancer, one of promising directions is chaos. It is connected to ideas of “genome chaos” and “life on the edge of chaos”, but they profoundly differ in the meaning of the term “chaos”. To build any coherent models, notions used by both ideas should be firstly brought closer. The hypothesis “life on the edge of chaos” using deterministic chaos has been radically deepened developed in recent years by the discovery of half-chaos. This new view requires a deeper interpretation within the range of the cell and the organism. It has impacts on understanding “chaos” in the term “genome chaos”. This study intends to present such an interpretation on the basis of which such searches will be easier and closer to intuition. We interpret genome chaos as deterministic chaos in a large module of half-chaotic network modeling the cell. We observed such chaotic modules in simulations of evolution controlled by weaker variant of natural selection. We also discuss differences between free and somatic cells in modeling their disturbance using half-chaotic networks.

Details

Title
Cancer and Chaos and the Complex Network Model of a Multicellular Organism
Author
Gecow, Andrzej 1   VIAFID ORCID Logo  ; Laszlo Barna Iantovics 2   VIAFID ORCID Logo  ; Tez, Mesut 3   VIAFID ORCID Logo 

 Independent Researcher, 999038 Warsaw, Poland 
 Electrical Engineering and Information Technology, Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Târgu Mureș, Romania 
 Ankara Numune Training and Research Hospital, 06100 Ankara, Turkey 
First page
1317
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716492227
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.