Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Research Area: Building components with integrated energy-active elements (BCEAE) are generally referred to as combined building-energy systems (CBES). Aim: Research on the application of energy (solar) roofs (ESR), ground heat storage (GHS), active thermal protection (ATP), and their cooperation in different modes of operation of energy systems with an emphasis on the use of renewable energy sources (RES) and waste heat. Methodology: The analysis and synthesis of the state of the art in the field, the inductive and analogical form of the creation of an innovative method of operation of combined building-energy systems, the development of an innovative solution of the envelope panel with integrated energy-active elements, the synthesis of the knowledge obtained from the scientific analysis and the transformation of the data into the design and implementation of the prototype of the prefabricated house IDA I and the experimental house EB2020. Results: The theoretical analysis of building structures with active thermal protection results in the determination of their energy potential and functionality, e.g., thermal barrier, heating/cooling, heat storage, etc. New technical solutions for envelopes with controlled heat transfer were proposed based on the implementation of experimental buildings. Conclusions: The novelty of our research lies in the design of different variants of the way of operation of energy systems using RES and in upgrading building envelope panels with integrated energy-active elements.

Details

Title
Practical Experience in the Application of Energy Roofs, Ground Heat Storages, and Active Thermal Protection on Experimental Buildings
Author
Kalús, Daniel 1   VIAFID ORCID Logo  ; Koudelková, Daniela 1 ; Mučková, Veronika 1 ; Sokol, Martin 1 ; Kurčová, Mária 1 ; Janík, Peter 2 

 Faculty of Civil Engineering, Slovak University of Technology, Radlinského 11, 81005 Bratislava, Slovakia 
 Engineer in the Field of Energy Efficiency of Buildings, Topolčianska 5, 85105 Bratislava, Slovakia 
First page
9313
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716492465
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.