Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ground vibration is one of the most unfavourable environmental effects of blasting activities, which can cause serious damage to neighboring homes and structures. As a result, effective forecasting of their severity is critical to controlling and reducing their recurrence. There are several conventional vibration predictor equations available proposed by different researchers but most of them are based on only two parameters, i.e., explosive charge used per delay and distance between blast face to the monitoring point. It is a well-known fact that blasting results are influenced by a number of blast design parameters, such as burden, spacing, powder factor, etc. but these are not being considered in any of the available conventional predictors and due to that they show a high error in predicting blast vibrations. Nowadays, artificial intelligence has been widely used in blast engineering. Thus, three artificial intelligence approaches, namely Gaussian process regression (GPR), extreme learning machine (ELM) and backpropagation neural network (BPNN) were used in this study to estimate ground vibration caused by blasting in Shree Cement Ras Limestone Mine in India. To achieve that aim, 101 blasting datasets with powder factor, average depth, distance, spacing, burden, charge weight, and stemming length as input parameters were collected from the mine site. For comparison purposes, a simple multivariate regression analysis (MVRA) model as well as, a nonparametric regression-based technique known as multivariate adaptive regression splines (MARS) was also constructed using the same datasets. This study serves as a foundational study for the comparison of GPR, BPNN, ELM, MARS and MVRA to ascertain their respective predictive performances. Eighty-one (81) datasets representing 80% of the total blasting datasets were used to construct and train the various predictive models while 20 data samples (20%) were utilized for evaluating the predictive capabilities of the developed predictive models. Using the testing datasets, major indicators of performance, namely mean squared error (MSE), variance accounted for (VAF), correlation coefficient (R) and coefficient of determination (R2) were compared as statistical evaluators of model performance. This study revealed that the GPR model exhibited superior predictive capability in comparison to the MARS, BPNN, ELM and MVRA. The GPR model showed the highest VAF, R and R2 values of 99.1728%, 0.9985 and 0.9971 respectively and the lowest MSE of 0.0903. As a result, the blast engineer can employ GPR as an effective and appropriate method for forecasting blast-induced ground vibration.

Details

Title
Prediction of Blast-Induced Ground Vibration at a Limestone Quarry: An Artificial Intelligence Approach
Author
Clement, Kweku Arthur 1   VIAFID ORCID Logo  ; Bhatawdekar, Ramesh Murlidhar 2 ; Mohamad, Edy Tonnizam 2 ; Mohanad Muayad Sabri Sabri 3   VIAFID ORCID Logo  ; Bohra, Manish 4 ; Khandelwal, Manoj 5   VIAFID ORCID Logo  ; Kwon, Sangki 6 

 Department of Mining Engineering, Faculty of Mining and Minerals Technology, University of Mines and Technology, Tarkwa P.O. Box 237, Ghana 
 Centre of Tropical Geoengineering (GEOTROPIK), School of Civil Engineering, Faculty of Engineering, University Teknologi Malaysia, Johor Bahru 81310, Malaysia 
 Centre of Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia 
 Shree Cement, Beawar 305 901, India 
 Institute of Innovation, Science and Sustainability, Federation University Australia, Ballarat, VIC 3350, Australia 
 Department of Energy Resources Engineering, Inha University, Incheon 22212, Korea 
First page
9189
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716492791
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.