Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Concrete-face slabs are the primary anti-permeability structures of the concrete-face rockfill dam (CFRD), and the resistance of face slab concrete to permeability is the key factor affecting the operation and safety of CFRDs. Herein, the influences of five fly ash dosages (namely 10%, 20%, 30%, 40% and 50%) on the permeability property of face slab concretes were investigated. Moreover, the difference in the permeability caused by the fly ash dosage variations is revealed in terms of the pore structure and fractal theory. The results illustrate that: (1) The inclusion of 10–50% fly ash lowered the compressive strength of face slab concretes before 28 days of hydration, whereas it contributed to the 180-day strength increment. (2) The incorporation of 10–50% fly ash raised the average water-seepage height (Dm) and the relative permeability coefficient (Kr) of the face slab concrete by about 14–81% and 30–226% at 28 days, respectively. At 180 days, the addition of fly ash improved the 180-day impermeability by less than 30%. (3) The permeability of face slab concretes is closely correlated with their pore structures and Ds. (4) The optimal fly ash dosage in terms of the long-term impermeability and pore refinement of face slab concretes is around 30%. Nevertheless, face slab concretes containing a high dosage of fly ash must be cured for a relatively long period before they can withstand high water pressure.

Details

Title
The Influence of Fly Ash Dosages on the Permeability, Pore Structure and Fractal Features of Face Slab Concrete
Author
Wang, Lei 1   VIAFID ORCID Logo  ; Zhou, Shihua 2 ; Shi, Yan 2 ; Huang, Yajun 3 ; Zhao, Feng 3 ; Huo, Tingting 3 ; Tang, Shengwen 4 

 School of Intelligent Construction, Wuchang University of Technology, Wuhan 430002, China; College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 
 Changjiang River Scientific Research Institute, Wuhan 430072, China 
 School of Intelligent Construction, Wuchang University of Technology, Wuhan 430002, China 
 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China 
First page
476
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716520968
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.