Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Menthol, a high-value commodity monoterpenoid chemical, holds an important market share commercially because of its distinct functions. The menthol on the market mainly originates from plant extraction, which is facing challenges such as the seasonal fluctuations and long growth cycle of plants. Therefore, this study attempted to realize the de novo synthesis of menthol through microbial fermentation. First, through heterologous expression and subcellular localization observation, a synthetic route from glucose to (−)-menthol was successfully designed and constructed in Saccharomyces cerevisiae. Then, the mevalonate (MVA) pathway was enhanced, and the expression of farnesyl diphosphate synthase (ERG20) was dynamically regulated to improve the synthesis of D-limonene, a key precursor of (−)-menthol. Shake flask fermentation results showed that the D-limonene titer of the recombinant strain reached 459.59 mg/L. Next, the synthesis pathway from D-limonene to (−)-menthol was strengthened, and the fermentation medium was optimized. The (−)-menthol titer of 6.28 mg/L was obtained, implying that the de novo synthesis of menthol was successfully realized for the first time. This study provides a good foundation for the synthesis of menthol through microbial fermentation.

Details

Title
Engineered Saccharomyces cerevisiae for the De Novo Biosynthesis of (−)-Menthol
Author
Lv, Xueqin 1 ; Zhou, Xuan 1 ; Ma, Jun 2 ; Mengrui Tao 2 ; Liu, Yanfeng 1   VIAFID ORCID Logo  ; Li, Jianghua 1 ; Du, Guocheng 1 ; Liu, Long 1   VIAFID ORCID Logo 

 Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China 
 Science Center for Future Foods, Jiangnan University, Wuxi 214122, China 
First page
982
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2309608X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716549743
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.