Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The transformation of organic pollutants by stabilized nano-FeS in oxic conditions is far less understood than in anoxic states. Herein, carboxymethyl cellulose-stabilized FeS (CMC-FeS) nanofluids are prepared at a CMC-to-FeS mass ratio of 1/2 and their performance of tetracycline hydrochloride (TC) degradation under oxic conditions was investigated. Here, we showed that TC could be efficiently removed by oxygenation of CMC-FeS nanofluids at neutral initial pH. We found that CMC-FeS dosages as low as 15 mg/L can achieve the TC removal efficiency as high as 99.1% at an initial TC concentration of 50 mg/L. Oxidative degradation plays a predominated role in TC removal (accounting for 58.0%), adsorption has the second importance (accounting for 37.0%), and reduction has minor impact (accounting for 4.1%) toward TC removal. Electron spin resonance assays, fluorescent detection using coumarin as a probe, and radical scavenging experiments confirm that hydroxy radicals (•OH), both in free and surface-bound forms, contribute to oxidation of TC. Humic acids brought detrimental effects on TC removal and therefore should be biologically degraded in advance. This work offers a facile and cost-effective solution to decontaminate TC in natural and engineered water bodies.

Details

Title
Highly Efficient Degradation of Tetracycline Hydrochloride in Water by Oxygenation of Carboxymethyl Cellulose-Stabilized FeS Nanofluids
Author
Xiao, Hong; Wang, Yingjun; Peng, Hong; Zhu, Ying; Fang, Dexin; Wu, Ganxue; Li, Li; Zeng, Zhenxing
First page
11447
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716549833
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.