Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The worldwide increment of food waste requires innovative management solutions, aligned with sustainability, energy, and food security. Anaerobic digestion (AD), followed by nutrient recovery, may be considered an interesting approach. This study proposed a co-digestion of apple pomace (AP) with swine manure (SM) to study the effect of different proportions of AP (0, 7.5, 15, and 30%, on a volatile solids (VS) basis) on the methane production and the stability of the process. Subsequently, the gas-permeable membrane (GPM) technology was applied to recover nitrogen (N) as ammonium sulfate (bio-based fertilizer) from the digestates produced after the AD of 7.5% of AP and SM, and SM alone. The results showed that the co-digestion of 7.5% and 15% of AP with SM presented a methane production similar to the AD of SM alone (with 412.3 ± 62.6, 381.8 ± 134.1, and 421.7 ± 153.6 mL g VS−1 day−1, respectively). The later application of the GPM technology on the resulting digestates, with SM alone and with 7.5% of AP with SM, showed total ammoniacal N recovery rates of 33 and 25.8 g N m−2 d−1, respectively. Therefore, the AP valorization through the AD process, followed by N recovery from the digestate, could be a good management strategy.

Details

Title
Energy and Nutrients from Apple Waste Using Anaerobic Digestion and Membrane Technology
Author
González-García, Isabel  VIAFID ORCID Logo  ; Riaño, Berta; Molinuevo-Salces, Beatriz; María Cruz García-González
First page
897
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20770375
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716550922
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.