1. Introduction
The term “sabkha” (plural: Sabkhas) is Arabic for a coastal and inland saline mud flat on playas that is developed by silt, clay, and sand deposits in shallow and often extensive depressions [1]. These sabkhas tend to be drenched in brine [2]. Sabkhas have a geographically large habitat range, with its presence in Southeast Europe, the Californian siliciclastic coast, North Africa, Mexico, Somalia, Morocco, Asia, the Middle East, Australia, and the Arabian Peninsula [3,4]. Kinsman and Park [5] identified two types of sabkha landforms: coastal sabkha and inland sabkha. Coastal sabkhas typically develop in arid regions’ coastal areas that have high net evaporation and minimal soil washing because of limited freshwater supplies, poor soil drainage, and scanty rainfall [1]. Moreover, sabkhas form approximately 6% of the coastal areas in Gulf Cooperative Countries [6]. In Saudi Arabia, sabkhas are often found in the coastal areas and sometimes inland [1]. These saline ecosystems are dominated by perennial halophytes, which form a variety of plant communities (see [7]).
There has been global interest in blue carbon (the carbon that is concealed in coastal ecosystems; [8]) as it can mitigate CO2 emissions [9,10]. It is, thus, important for the global carbon cycle community and local jurisdictions to quantify coastal blue carbon stocks as carbon sequestration is motivated by restoring and conserving coastal blue carbon habitats [11,12]. In addition, both international and domestic parties interested in developing regulated carbon markets have been establishing new monetary value on coastal blue carbon as well as enabling its open market trading [13]. It is necessary to quantify carbon stocks accurately and in a location-specific manner for better understanding spatial variability concerning coastal blue carbon and assessing future carbon stocks in terms of habitat preservation, degradation, loss, or restoration [10,12,14,15].
If there is insufficient data for a region, using universal global estimates instead of site-specific data is not recommended as it can lead to inaccurate carbon stocks estimates [16] because local carbon dynamics differ in their responses to various site-specific factors, such as hydrodynamic pressures, geological processes, vegetation assemblages, soil type, and age [17,18,19,20,21]. Therefore, to ensure that sabkhas are included in climate mitigation efforts, it is crucial to have the necessary knowledge regarding the sabkhas soil organic carbon (SOC) stocks’ spatial distribution, for which quantification of carbon stocks can aid in developing local, regional, and national carbon strategies and help with conservation and rehabilitation efforts [22].
The present study is a part of a series of papers that aim to assess SOC stocks in various coastal ecosystems of Saudi Arabia [23,24,25,26,27,28]. Hence, by quantifying blue carbon ecosystem services in areas like sabkhas can provide new avenues for attaining carbon reduction goals through the emerging economic carbon market. Thus far, no study has focused on Saudi Arabia for assessing the carbon stock of sabkhas on the southern Saudi Red Sea coast. This study, therefore, evaluates SOC content, soil bulk density (SBD), SOC stock, and SOC density in sabkhas with varying vegetation covers on the southern Red Sea coast of Saudi Arabia.
For the salt marsh ecosystem, vegetation plays a crucial role in terms of the organic carbon cycle [29], with plants being the primary organic matter origin in the majority of salt marshes [30,31]. This study, thus, aims to assess how plant cover effects can possible impact “blue carbon.” The study focused on questions such as “what are the SOC stocks of the sabkhas along the southern Saudi Red Sea coast?” and “how do they differ between locations with different vegetation covers?” Our hypothesis was that the SOC content, SBD, SOC stock, and SOC density would all vary among sabkhas in response to the various of vegetation covers. Such types of data and information are important for putting any management plan sabkhas along the Saudi Arabi Red Sea coast and provide argue for the restoration of sabkhas in Saudi Arabia. The present study’s findings can have global implications as they can be applied to similar ecosystems to help reduce carbon emissions in other regions and alleviate their ecological degradation, as these ecosystems struggle to establish a fine balance with changing climatic conditions.
2. Materials and Methods
2.1. Study Area
The Red Sea expands from 28°45′ N at the Aqaba Gulf’s northern end to approximately 13° N at its southern end at Bab El-Mandeb (Figure 1). Saudi Arabia’s Red Sea coast spans in a NW-SE manner for 1700 km and forms nearly 80% of the total sea length (see [28]). Coastal regions can be very different geomorphologically, such as coast caused by marine terraces, coastal sabkhas, alluvial plains, and wadis spanning 30 km in width with a few Neogene sediments. There are numerous alluvial fans, dry riverbeds, and estuaries. Several fluvial channels can also be detected in the mountains to the east and the coastal plains, which transport sediment and water during monsoon into the open sea or the lagoons [32].
The weather in the area of study is hot and dry [33]. The average high temperature is about 38 °C and the average low temperature is about 22 °C [34]. From June to September are the hottest months in the study area. Based on records from 2002 to 2012, the average annual rainfall is 6.6 mm and the average annual evaporation is 1200 mm [34]. January, April, November, and December are the months with the most rain. Rain falls on steep mountain slopes, which flow through wadis to the Red Sea. This often causes flash floods [33]. Wind speed and direction change with the seasons. In summer, the wind blows from the west, and in winter, it blows from the southwest. The speed of the wind ranges from 2 to 50 km/h [34]. From June to August, a strong west wind blows on and off, causing dust storms along the southern coast of the Red Sea [35]. In the study area, the winds that blow most often cause southward longshore currents [33]. Along the Red Sea, normal tides are low and range from 0.2 to 0.3 m. Spring tide is 0.9 m and fall tide is 1.4 m [36]. Large tides and storms flood lowlands along the coast, and sabkhas are flooded through tidal inlets [33].
2.2. Soil Sampling
This study was conducted from 17 December 2020 to 2 January 2021 and focused on 10 sites for sampling represent 10 sabkhas (Table S1). These sites were all located on the Saudi Arabia Red Sea’s southern coastline (Figure 1). The water depth of the sampling sites was less than 50 cm. In particular, the uppermost layers of the sabkha soils are typically rich in carbonates, sulfates, halite, and chloride [37]. Clastic fraction in sabkha soils ranges from coarse silt to coarse sand with moderate sorting, and is transported by currents and wind [33]. Sabkhas areas range from 0.08 km2 to 2.30 km2 in size, and occur 0.28 km to 4.57 km landward of the shoreline (Table S1). The total vegetation cover was visually assessed [38,39] to classify the sampling sites into four categories: 0–25%, >25–50%, >50–75% and >75–100%. The recorded species in the sampling sites were Arthrocnemum macrostachyum (Amaranthaceae, subshrub), Binertia cycloptera (Amaranthaceae, annual herb), Halocnemum strobilaceum (Amaranthaceae, subshrub), Halopeplis perfoliata (Amaranthaceae, shrub), Limonium axillare (Plumbaginaceae, subshrub), and Salicornia europaea (Amaranthaceae, annual herb). The dominant species in all sampling sites was L. axillare, while B. cycloptera, H. perfoliate, and S. europaea were found as a codominant species.
A hand soil corer (made of stainless steel, 100 cm long with an inner diameter of 70 mm) was used to collect 10 to 15 soil cores (Table S1) from every sampling site. Based on field observation, soil cores have a typical sabkha soil series [40] (detailed typical description of soil sabkha series can be found here: “SABKHA SERIES. Available online:
2.3. Sample Analysis
First, the soil samples were oven-dried for 3 days at 105 °C. Next, the samples were weighed to determine SBD [g/cm3] according to Wilke’s [44] methodology:
(1)
where ρsj refers to the SBD [g/cm3] of the jth layer, mj refers to the jth layer’s soil sample mass [g] dried at 105 °C, and vj refers to the jth layer’s soil sample volume [cm3]. Each sample’s SOC contents were determined by calculating the soil organic matter (SOM; g/kg). For this, the loss-on-ignition method was carried out for two hours at 550 °C as outlined by Jones [45]. To determine SOC content, Craft et al.’s [46] method was applied:Below is how SOC density [kg C/m3] was calculated [47]:
SOC content [g C/kg] = (0.40 × SOM) + (0.0025 × SOM2) (2)
SOCdj = ρsj × SOCj(3)
where SOCdj refers to the jth layer’s SOC density [kg C/m3], ρsj refers to the jth layer’s SBD [g/cm3], and SOCj refers to the jth layer’s SOC content [g C/kg]. Based on the methodology presented by Meersmans et al. [48], the following equation was used to calculate SOC stock [kg C/m2]:(4)
where SOCs refers to SOC stock [kg C/m2], ρsj refers to the jth layer’s SBD [g/cm3], SOCj refers to the jth layer’s SOC content [g C/kg], Dr refers to the reference depth [= 0.5 m], Tj refers to the jth layer’s thickness [m], and k refers to the number of layers [= 10].2.4. Statistical Analysis
Prior to the analysis, the data were assessed through the Shapiro–Wilk’s W test to determine normality of distribution and using the Levene’s test to determine homogeneity of variance. The data fail tests for homogeneity of variance (p < 0.001) and for normality of distribution (p < 0.001); thus, log transformation was carried out on the data before executing analysis of variance (ANOVA). Statistically significant variances were determined in SBD, SOC density, and SOC content in sabkhas having different vegetation covers for all 10 soil depths using two-way ANOVA. In addition, Pearson correlation coefficient and non-linear regression were applied for determining the relationship between the SBD and SOC content [28]. One-way ANOVA was then implemented for determining major differences among the sabkhas having different vegetation covers for the total means of SBD, SOC stock, SOC density, and SOC content. To identify whether the vegetation cover of the 10 sabkhas sites impacted the SBD, SOC stock, SOC density, and SOC content using linear regression analysis. SPSS 23 was used for statistical analyses [49].
3. Results
An analysis of the sabkhas having different vegetation covers showed a significance SBD difference with 52.1 F-value (p < 0.001) where sabkhas having vegetation cover >75–100% had the lowest mean values (1.46 g/cm3) and sabkhas having vegetation cover 0–25% had the highest mean values (1.78 g/cm3). This affirms the present study’s hypothesis (Table 1). A significant rise was also observed in the SBD distribution of the sabkhas having vegetation cover >75–100% from 0.97 g/cm3 at a 0–5 cm depth to 1.76 g/cm3 at a 45–50 cm depth (Figure 2). However, the SBD distribution in the sabkhas having vegetation cover 0–25% considerably increased from 1.33 g/cm3 at a 0–5 cm depth to 2.25 g/cm3 at a 45–50 cm depth.
Significant differences were also observed in the total mean of SOC content among the studied sabkhas having different vegetation covers with a 475.6 F-value (p < 0.001). Here, sabkhas having vegetation cover >75–100% had highest mean values (27.6 g C/kg), while sabkhas having vegetation cover 0–25% had lowest mean values (4.9 g C/kg). This affirms the present study’s hypothesis (Table 1). There was also a major decrease in the SOC contents of the sabkhas having vegetation cover >75–100% from 44.0 g C/kg at a 0–5 cm depth to 15.9 g C/kg at a 45–50 cm depth (Figure 3). On the other hand, the SOC contents in the sabkhas having vegetation cover 0–25% dropped considerably from 11.7 g C/kg at a 0–5 cm depth to 1.8 g C/kg at a 45–50 cm depth.
The study showed a significant and inverse relationship between SOC content [g C/kg] and SBD [g/cm3], as presented by these exponential equations: SBD = 1.2055 + 0.9502 e−0.1222 × SOC content (R2 = 0.3596, n = 320), SBD = 1.0332 + 1.0857 e–0.0527 × SOC content (R2 = 0.2803, n = 300), SBD = 1.1876 + 1.2712 e–0.0618 × SOC content (R2 = 0.3999, n = 330) and SBD = −1.2924 + 3.3742 e−0.0075 × SOC content (R2 = 0.5297, n = 300) for sabkhas with vegetation covers 0–25%, >25–50%, >50–75% and >75–100%, respectively (Figure 4).
There was a significant difference in the total mean of SOC density of the studied sabkhas having different vegetation covers with a 756.9 F-value (p < 0.001). The sabkhas having vegetation cover >75–100% had the highest mean values (38.9 kg C/m3) while sabkhas having vegetation cover 0–25% had the lowest mean values (7.3 kg C/m3). Hence, these findings affirm the present study’s hypothesis (Table 1). A significant drop was noticed in the SOC density in the sabkhas having vegetation cover >75–100% from 42.3 kg C/m3 at a 0–5 cm depth to 32.3 kg C/m3 at a 45–50 cm depth (Figure 5). However, SOC density in the sabkhas having vegetation cover 0–25% significantly reduced from 14.4 kg C/m3 at a 0–5 cm depth to 3.2 kg C/m3 at a 45–50 cm depth.
There were also major differences in the SOC stocks with 229.2 F-values (p < 0.001) for the sabkhas having different vegetation covers (Table 1). Considering the entire soil interval depth from 0 to 50 cm, the soil from sabkhas having vegetation cover >75–100% had the highest SOC stock value (19.4 kg C/m2) and the sabkhas having vegetation cover 0–25% had the lowest SOC stock value (3.6 kg C/m2). That is, there was 533% greater SOC stock in sabkhas having vegetation cover >75–100% compared to sabkhas having vegetation cover 0–25% (Table 1). Overall, there was in increase in SOC content, SOC density, and SOC stock in correlation with increased vegetation cover of sabkhas (r = 0.729, p < 0.001; r = 0.801, p < 0.001 and r = 0.919, p < 0.001, respectively). However, SBD showed the opposite trend (r = − 0.330, p < 0.001) (Figure 6).
4. Discussion
A dynamic feature that changes based on the soil’s structural conditions, SBD is the specific soil volume’s dry weight [50]. SBD can help determine soil compaction, as well as soil water permeability and/or mechanical resistance to plant growth [47,51]. Furthermore, it can impact the SOC content distribution and is crucial for its evaluation [52]. According to the present study’s results, in all study sites, SBD increased gradually with depth, which was also observed by Drake et al. [53] on tidal salt marshes of the northeast United States, by Bai et al. [54] on salt marshes of the Yellow River Delta in China, by Ellison and Beasy [55] on salt marshes of Tasmania in Australia, and by Gispert et al. [56] on coastal salt marshes of Spain. This SBD behavior may be the result of the tailings and plant remains collecting on the soil’s surface and sub-surface layers [57], which may alter the organic matter content, compaction, and porosity [50]. The present study’s relatively high SBD (>1.45 g/cm3) may also be caused by the breakdown and serious compaction of the coastal areas’ soil structure (see [54]). The results suggest that the soil from sabkhas having vegetation cover 0–25% had the greater average SBD and the sabkhas having vegetation cover >75–100% had the lowest mean value. Moreover, rising vegetation cover was also found to increase leaf and stem production, which makes them easy to incorporate into the soils.
SOC contents differ spatiotemporally and are impacted by geomorphological conditions and the sabkha communities’ compositions [58,59]. Moreover, SOC contents are also influenced by climate change effects as well as human activities including pollution, land-use inversions, reclamation, and deforestation [24,60,61]. SOC contents and dynamics are also impacted by the sabkhas species composition, the sabkha age, biomass, productivity, and vegetation age structure [62,63]. According to previous studies, SOC content differs depending on changes in vegetation cover, decomposition, and vegetation primary productivity, all of which are impacted by bioturbation, species composition, and other physico-chemical factors [54,64]. The present study showed that the soil from sabkhas having vegetation cover >75–100% had the greater average SOC content and the sabkhas having vegetation cover 0–25% had the lowest mean value. Moreover, in the coastal wetland, SOC temporal and special distributions were significantly impacted by vegetation and the below-ground production of roots and rhizomes [65]. Overall, more than 50% plant biomass production was assigned to the below-ground that was further buried in the soil due to the tides’ sediment deposit [66]. Lai et al. [67] and Gispert et al. [56] in their studies referred that denser vegetation and plant canopy are paramount for long-term carbon enrichment in soil and found comparatively higher carbon inputs in soils under the main vegetation than out the main vegetation.
The reducing incline of SOC content with depth in the present study can be attributed to the downward migrating of SOC resulting from the surface soil’s leaching and microbial activities [54]. Several studies have observed that, in arid and semi-arid ecosystems, plant production is a significant SOC input to soil [63,68]. On the other hand, apart from plant litter input, both tidal flooding input and the organic carbon burial resulting from sediment accumulation [69] play a major role in the SOC budgets and SOC’s depth distribution patterns for coastal salt marshes [54]. The progressive decrease in SOC content from the surface to the bottom of soil cores was similar to previous studies conducted on salt marshes in China [54,70], Australia [55], USA [53,71], Canada [17], UK [72], Germany [73], and Spain [56]. Several studies have shown that carbon content reduces at deeper soil depths because of diagenesis of labile material and on-going decomposition [19,54,74,75].
The SBD plays a major role in assessing the SOC density and the SOC stock; however, not many studies have observed SBD with SOC content for sabkhas soil. The present study observed a non-linear reduction of the SBD level in the soil as SOC content increased. Hence, this non-linear relationship can be regarded as a useful tool to determine the SOC stock and SOC density in the sabkhas–especially for those sabkhas that characterized by vegetation that has a plant cover of 75% or higher (R2 = 0.5297). The present study also noted a negative correlation between SBD and SOC content, which indicated that SBD can impact soil porosity, ventilation, soil structure, and soil permeability, as well as impact SOC accumulation [76]. Several studies have observed a negative correlation between SOC content and SBD in salt marshes sediments in Tampa Bay, Florida, USA [12]; Tasmania, Australia [55]; and tropical salt marshes of Sri Lanka [77].
Organic carbon gets collected in soils due to autochthonous material being input through primary production or allochthonous material getting deposited compared to the output resulting from erosion, decomposition/mineralization, and leaching [78,79]. The SOC stocks may also vary due to different factors such as abiotic (e.g., climate, mineralogy, frequency, topography, soil type, nutrients, and extent of inundation) and biotic conditions including plant functional traits (e.g., above- and below-ground production inputs, carbon allocation, and turnover); decomposition; vegetation type; vegetation biomass; the influence of other biota on retention, consumption, or exposure to oxidation; and anthropogenic influences (e.g., carbs and saprophytes) [64,80,81,82,83,84]. In the present study, the soil from sabkhas having vegetation cover >75–100% had the greater average SOC stock and sabkhas having vegetation cover 0–25% had the lowest mean value. This finding is supported by previous studies concerning various salt marshes from around the globe. Zhao et al. [85] on tidal salt marsh of the Yellow River estuary in China noted that, during summer, SOC stock was higher in plant-covered salt marshes than in mudflat salt marshes with no plants. Moreover, the study by Kelleway et al. [86] on salt marshes on SE Australia’s NSW coast showed that carbon gains can be increased by conserving rush communities and maintaining high density vegetation cover. The study by Hansen et al. [87] conducted in Elbe estuary, Germany, noted that the reduction in SOC pool correlated to the increasing salinity was primarily caused by reducing biomass production. Previous studies show that above-ground vegetation cover helps improve the SOC accumulation in numerous ways [79,88,89] leading to greater carbon burial in vegetated soils than in non-vegetated habitats [64].
SOC stocks vary significantly across countries, hemispheres, latitudes, and plant community compositions [61]. In addition, hydrological fluctuations, burial processes, and vegetation succession lead to the SOC in salt marshes to have a considerable spatial variation [54]. There have been problems comparing salt marsh sediment carbon stock to other studies due to varying geomorphology, sediment depths, and delineation of vegetation types [90]. Compared to the estimated 250 Mg C/ha global SOC stock [65], the present study’s core SOC stocks of 36.0 Mg C/ha for sabkhas having vegetation cover 0–25% and 194.0 Mg C/ha for sabkhas having vegetation cover >75–100% are lower. However, the present study’s values were consistent with many other studies carried out in arid and semi-arid countries (Table 2). This difference is primarily caused by the fact that the global estimate calculated the top meter of soil [66], whereas the present study’s SOC stocks reached only a 50 cm depth. The relatively low sabkhas’ SOC stock may have been the result of high salinity, low soil fertility, and poor soil textures [91]. Due to the significantly arid conditions, the sabkhas vegetation growth has inadequate nutrient content [92]. Moreover, it may also be due to the study’s measurement methods or the study area’s climate, geographical age, sampling time, and vegetation composition [93].
5. Conclusions
Coastal marshes constitute a fragile ecosystem that is in a state of rapid decline at 0.66% per year [109]. According to estimates, in the next 100 years, 30–40% coastal wetlands [110] may be eliminated based on the present rate of loss [111]. Coastal wetlands are at high risk, with a major portion already lost or fragmented because of different anthropogenic activities, including drainage and construction works, reclamation, and unrestricted stock access, while also being endangered by rising global sea levels and corresponding mangrove encroachment [112,113]. The present study examined the coastal sabkhas’ SOC stock by considering the vegetation cover on Saudi Arabia’s Red Sea coast. An increase in SOC density, SOC stock, and SOC content was observed with increased vegetation cover of sabkhas, and the opposite trend was observed for SBD. However, ten small Saudi Arabia Red Sea coast sabkhas indicates that the data can help estimate the possible storage impacts of local managed sites on the southern Red Sea coast, while also being generally suggestive of sabkhas on the whole Red Sea coast. Moreover, the data may help foresee how the vegetation cover can possibly impact sabkhas carbon stock. These sabkhas’ SOC stock is motivation enough for prioritizing sabkha ecosystems for conservation. It is, therefore, crucial to protect and restore these ecosystems for carbon sequestration along with other ecosystem services. It is also necessary to consider the climate mitigation projects for managing the sabkha ecosystems on Saudi Arabia’s coastal regions and protecting as well as conserving the existing SOC stocks.
6. Limitations and Uncertainties
The present study aimed to examine how vegetation cover impacts SOC stock in sabkhas by focusing on 10 sites represent 10 sabkhas on Saudi Arabia’s southern Red Sea coast. All 10 sites were chosen to reflect varied vegetation covers, but other factors apart from vegetation cover may also lead to diverse soil (SBD, SOC content, SOC density, and SOC stock) parameters in different sites. Examples of factors are the variability resulting from species composition, community structure, geomorphological settings, intertidal location, human interference, soil fertility, and seasonal variations (which impacts the changing pattern of carbon dynamics in arid ecosystems; [114]). Future studies must, therefore, assess how other factors impact carbon dynamics of sabkhas.
Conceptualization, E.M.E.; methodology, E.M.E., M.A., S.A.A. and M.T.A.; software, E.M.E.; validation, E.M.E.; formal analysis, E.M.E.; investigation, E.M.E.; resources, E.M.E.; data curation, E.M.E.; writing—original draft preparation, E.M.E.; writing—review and editing, M.A., S.A.A., D.A.A.-B., H.A. and A.E.K.; visualization, E.M.E.; supervision, E.M.E.; project administration, E.M.E.; funding acquisition, E.M.E. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
The data are contained within the article and
The authors declare no conflict of interest.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Figure 1. Satellite images of the study area indicating the ten sampling sites represent ten sabkhas.
Figure 2. Distribution of soil bulk density [g/cm3] in relation to soil depth [cm] in ten sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia. Horizontal bars indicate the standard errors of the means; F-values represent the two-way analysis of variance (ANOVA); Vegetation cover: 0—25%, >25—50%, >50—75% and >75—100%; Depth: 0—5, 5—10, 10—15, 15—20, 20—25, 25—30, 30—35, 35—40, 40—45 and 45—50 cm; *: p < 0.05; ***: p < 0.001; n = 30 for vegetation cover >25—50 and >75—100%; n = 32 for vegetation cover 0—25%; n = 33 for vegetation cover >50—75%.
Figure 3. Distribution of soil organic carbon content [g C/kg] in relation to soil depth [cm] in ten sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia. Horizontal bars indicate the standard errors of the means; F-values represent the two-way analysis of variance (ANOVA); Vegetation cover: 0—25%, >25—50%, >50—75% and >75—100%; Depth: 0—5, 5—10, 10—15, 15—20, 20—25, 25—30, 30—35, 35—40, 40—45 and 45—50 cm; ***: p < 0.001; n = 30 for vegetation cover >25—50 and >75—100%; n = 32 for vegetation cover 0—25%; n = 33 for vegetation cover >50—75%.
Figure 4. Non-linear regression between soil organic carbon content [g C/kg] and soil bulk density [g/cm3] of soil samples in ten sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia.
Figure 5. Distribution of soil organic carbon density [kg C/m3] in relation to soil depth [cm] in ten sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia. Horizontal bars indicate the standard errors of the means; F-values represent the two-way analysis of variance (ANOVA); Vegetation cover: 0—25%, >25—50%, >50—75% and >75—100%; Depth: 0—5, 5—10, 10—15, 15—20, 20—25, 25—30, 30—35, 35—40, 40—45 and 45—50 cm; ***: p < 0.001; n = 30 for vegetation cover >25—50 and >75—100%; n = 32 for vegetation cover 0—25%; n = 33 for vegetation cover >50—75%.
Figure 6. The relation between vegetation cover [%] and soil bulk density [g/cm3], soil organic carbon content [g C/kg], soil organic carbon density [kg C/m3], and soil organic carbon stock [kg C/m2] of soil samples in ten sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia.
Mean ± standard error of soil bulk density [SBD; g/cm3], soil organic carbon [SOC] content [g C/kg], SOC density [kg C/m3], and SOC stock [kg C/m2] of ten sampling sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia.
Vegetation Cover (%) | SBD | SOC Content | SOC Density | SOC Stock |
---|---|---|---|---|
0–25 | 1.78 ± 0.02 d |
4.9 ± 0.2 a |
7.3 ± 0.3 a |
3.6 ± 0.2 a |
>25–50 | 1.69 ± 0.02 c |
11.5 ± 0.4 b |
17.8 ± 0.5 b |
8.9 ± 0.3 b |
>50–75 | 1.61 ± 0.02 b |
19.0 ± 0.5 c |
30.8 ± 0.6 c |
15.4 ± 0.4 c |
>75–100 | 1.46 ± 0.02 a |
27.6 ± 0.6 d |
38.9 ± 0.6 d |
19.4 ± 0.7 d |
F-value | 52.1 *** | 475.6 *** | 756.9 *** | 229.2 *** |
F-values represent one-way analysis of variance (ANOVA); degrees of freedom (df) = 3; means in the same column followed by different letters are significantly different at p < 0.05 according to Tukey’s HSD (Honest Significant Difference) test; ***: p < 0.001.
Mean of soil bulk density [SBD; g/cm3], soil organic carbon [SOC] content [g C/kg] and SOC stock [kg C/m2] in ten sampling sites represent ten sabkhas with different vegetation covers along the southern Red Sea coast of Saudi Arabia compared with those reported for different salt marshes around the globe.
Location | SBD | SOC |
SOC Stock | Depth [cm] | Reference |
---|---|---|---|---|---|
Southern Red Sea coast, Saudi Arabia | 1.46–1.78 | 4.9–27.6 | 3.6–19.4 | 50 | Present study |
Coastal sabkha, United Arab Emirates | 1.20–1.25 | 8.2 | 42.8 | Schile et al. [ |
|
Coastal salt marshes of the Yellow River Delta, China | 1.42–1.76 | 1.7–4.0 | 4.9–5.6 | 100 | Bai et al. [ |
Tidal salt marsh of the Yellow River estuary, China | 1.48–1.88 | 2.9–4.1 | 1.6–2.1 | 40 | Zhao et al. [ |
Coastal salt marshes in Jiangsu, China | 0.7–5.7 | 7.9 | 300 | Liu et al. [ |
|
Tidal salt marshes in the Liaohe Delta, China | 1.47–1.55 | 5.3–11.4 | 3.0–4.2 | 30 | Mao et al. [ |
Yangtze estuary, China | 1.29–1.36 | 0.7–10.9 | 2.4–4.5 | 100 | Yuan et al. [ |
Salt marshes of Tuticorin area, India | 0.13–0.48 | 21.8–38.1 | 0.8–5.4 | 30 | Kaviarasan et al. [ |
Eulsukdo salt marsh and Seomjin River estuary, South Korea | 20.9–28.9 | 14.6–25.5 | 100 | Byun et al. [ |
|
Tropical salt marshes, Sri Lanka | 0.85–1.50 | 7.8–23.2 | 11.0–23.3 | 50 | Perera et al. [ |
Salt marshes of Nahoon estuary, South Africa | 11.0 | 50 | Raw et al. [ |
||
Humber estuary, UK | 14.5–35.4 | 100 | Andrews et al. [ |
||
Elbe estuary, Germany | 0.68–1.22 | 12.5–51.3 | 5.8–35.0 | 100 | Hansen et al. [ |
Marina del Carmolí salt marsh, Spain | 1.0–1.3 | 10 | González-Alcaraz et al. [ |
||
La Pletera salt marsh, Spain | 1.25–1.54 | 2.0–40.1 | 0.2–2.7 * | 40 | Gispert et al. [ |
Hunter estuary, Australia | 65.0 | 100 | Howe et al. [ |
||
Salt marsh along the Mornington Peninsula edge, Victoria, Australia | 16.9 | 100 | Livesley and Andrusiak [ |
||
Urban estuary, Coffs Harbour, Australia | 0.81 | 56.2 | 33.3 | 100 | Brown et al. [ |
Salt marshes in New South Wales, Australia | 16.4 | 100 | Kelleway et al. [ |
||
Salt marsh of Tasmania, Australia | 0.50–2.40 | 5.0–70.0 | 30 | Ellison and Beasy [ |
|
Salt marshes along Haslams Creek, Australia | 1.22–1.57 | 10.9–30.2 | 4.8–6.5 | 30 | Santini et al. [ |
Salt marsh along the northern border of Little Assawoman Bay, USA | 0.17–1.63 | 10.0–301.0 | 2.4–8.6 | 22.5 | Elsey-Quirk et al. [ |
Tidal salt marshes of the northeast USA | 0.13–0.40 | 82.0–239.0 | 14.4–17.7 | 60 | Drake et al. [ |
Three marshes in Barnegat Bay and three marshes in Delaware estuary, USA | 0.14–0.49 | 63.0–302.0 | 50 | Unger et al. [ |
|
Two marshes on the Gulf of St. Lawrence coast of New Brunswick, Canada and one on the southern coast of Maine, USA | 0.28–0.50 | 21.0–30.0 | 26.1 | 50 | van Ardenne et al. [ |
Salt barrens in Tampa Bay, Florida, USA | 1.27–1.44 | 5.0–10.0 | 2.7 | 50 | Radabaugh et al. [ |
Salt marshes in Tampa Bay, Florida, USA | 0.95–1.27 | 16.0–66.0 | 6.6 | 50 | Radabaugh et al. [ |
Salt marsh in southern Puget Sound, Washington, USA | 0.17–0.65 | 33.0–208.0 | 50 | Drexler et al. [ |
|
Salt marsh in Boundary Bay, Delta, British |
0.53–0.65 | 43.0–113.0 | 3.9–8.3 | 29 | Gailis et al. [ |
Tropical salt marshes, Mexico and El Salvador | 2.0–303.0 | 3.0–46.5 | 100 | Ruiz-Fernández et al. [ |
|
Salt marshes of the Amazon region, Brazil | 0.86–1.57 | 3.4–41.5 | 9.5–12.0 | 100 | Kauffman et al. [ |
*: depth as 5 cm.
Supplementary Materials
The following supporting information can be downloaded at:
References
1. Al-Jaloud, A.A.; Hussain, G. Sabkha ecosystem and halophyte plant communities in Saudi Arabia. Sabkha Ecosystems; Volume II: West and Central Asia Ajmal Khan, M.; Böer, B.; Kust, G.S.; Barth, H.-J. Springer: Berlin/Heidelberg, Germany, 2006; pp. 1-7.
2. Schulz, S.; Horovitz, M.; Rausch, R.; Michelsen, N.; Mallast, U.; Köhne, M.; Siebert, C.; Schüth, C.; Al-Saud, M.; Merz, R. Groundwater evaporation from salt pans: Examples from the eastern Arabian Peninsula. J. Hydrol.; 2015; 531, pp. 792-801. [DOI: https://dx.doi.org/10.1016/j.jhydrol.2015.10.048]
3. Barakat, N.; El-Gawad, A.; Laudadio, V.; Kabiel, H.; Tufarelli, V.; Cazzato, E. A contribution to the ecology and floristic markers of plant associations in different habitats of Sinai Peninsula, Egypt. Rend. Lincei; 2014; 25, pp. 479-490. [DOI: https://dx.doi.org/10.1007/s12210-014-0329-6]
4. Sciandrello, S.; Musarella, C.; Puglisi, M.; Spampinato, G.; Tomaselli, V.; Minissale, P. Updated and new insights on the coastal halophilous vegetation of southeastern Sicily (Italy). Plant Sociol.; 2019; 56, pp. 81-98.
5. Kinsman, D.J.J.; Park, R.K. Studies of recent sedimentology and early diagenesis, Trucial Coast, Arabia Gulf. 2nd Regional Technical Symposium Society Ptr. Eng. of AIME, Saudi Arabian Section. 1969.
6. Batanouny, K.H. Ecology and Flora of Qatar; The Center for Scientific and Applied Research, University of Qatar: Doha, Qatar, 1981.
7. Dar, B.A.; Assaeed, A.M.; Al-Rowaily, S.L.; Al-Doss, A.A.; Abd-ElGawad, A.M. Vegetation composition of the halophytic grass Aeluropus lagopoides communities within coastal and inland sabkhas of Saudi Arabia. Plants; 2022; 11, 666. [DOI: https://dx.doi.org/10.3390/plants11050666]
8. Siikamäki, J.; Sanchirico, J.N.; Jardine, S.; McLaughlin, D.; Morris, D.F. Blue Carbon: Global Options for Reducing Emissions from the Degradation and Development of Coastal Ecosystems; Resources for the Future: Washington, DC, USA, 2012.
9. Almahasheer, H.; Serrano, O.; Duarte, C.M.; Arias-Ortiz, A.; Masque, P.; Irigoien, X. Low Ccarbon sink capacity of Red Sea mangroves. Sci. Rep.; 2017; 7, 9700. [DOI: https://dx.doi.org/10.1038/s41598-017-10424-9]
10. Chmura, G.L. What do we need to assess the sustainability of the tidal salt marsh carbon sink?. Ocean Coastal Manag.; 2013; 83, pp. 25-31. [DOI: https://dx.doi.org/10.1016/j.ocecoaman.2011.09.006]
11. Keshta, A.E.; Yarwood, S.A.; Baldwin, A.H. A new in situ method showed greater persistence of added soil organic matter in natural than restored wetlands. Res. Ecol.; 2021; 29, e13437. [DOI: https://dx.doi.org/10.1111/rec.13437]
12. Radabaugh, K.R.; Moyer, R.P.; Chappel, A.R.; Powell, C.E.; Bociu, I.; Clark, B.C.; Smoak, J.M. Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tempa Bay, Florida, USA. Estuar. Coast.; 2018; 41, pp. 1496-1510. [DOI: https://dx.doi.org/10.1007/s12237-017-0362-7]
13. Ullman, R.; Bilbao-Bastida, V.; Grimsditch, G. Including blue carbon in climate market mechanisms. Ocean Coast. Manag.; 2013; 83, pp. 15-18. [DOI: https://dx.doi.org/10.1016/j.ocecoaman.2012.02.009]
14. Banerjee, K.; Sappal, S.M.; Ramachandran, P.; Ramesh, R. Salt marsh: Ecologically important, yet least studied blue carbon ecosystems in India. J. Clim. Chang.; 2017; 3, pp. 59-72. [DOI: https://dx.doi.org/10.3233/JCC-170014]
15. Keshta, A.E.; Riter, J.C.A.; Shaltout, K.H.; Baldwin, A.H.; Kearney, M.; Sharaf El-Din, A.; Eid, E.M. Loss of coastal wetlands in Lake Burullus, Egypt: A GIS and remote-sensing study. Sustainability; 2022; 14, 4980. [DOI: https://dx.doi.org/10.3390/su14094980]
16. Ewers Lewis, C.J.; Carnell, P.E.; Sanderman, J.; Baldock, J.A.; Macreadie, P.I. Variability and vulnerability of coastal ‘blue carbon’ stocks: A case study from southeast Australia. Ecosystems; 2018; 21, pp. 263-279. [DOI: https://dx.doi.org/10.1007/s10021-017-0150-z]
17. Connor, R.F.; Chmura, G.L.; Beecher, B.C. Carbon accumulation in bay of Fundy salt marshes: Implications for restoration of reclaimed marshes. Global Biogeochem. Cycles; 2001; 15, pp. 943-954. [DOI: https://dx.doi.org/10.1029/2000GB001346]
18. Mahaney, W.M.; Smemo, K.A.; Gross, K.L. Impacts of C4 grass introductions on soil carbon and nitrogen cycling in C3-dominated successional systems. Oecologia; 2008; 157, pp. 295-305. [DOI: https://dx.doi.org/10.1007/s00442-008-1063-5]
19. Elsey-Quirk, T.; Seliskar, D.; Sommerfield, C.; Gallagher, J. Salt marsh carbon pool distribution in a Mid-Atlantic Lagoon, USA: Sea level rise implications. Wetlands; 2011; 31, pp. 87-99. [DOI: https://dx.doi.org/10.1007/s13157-010-0139-2]
20. Ouyang, X.; Lee, S.Y. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences; 2014; 11, pp. 5057-5071. [DOI: https://dx.doi.org/10.5194/bg-11-5057-2014]
21. Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Baldock, J.A.; Ralph, P.J. Sediment and carbon deposition vary among vegetation assemblages in a coastal salt marsh. Biogeosciences; 2017; 14, pp. 3763-3779. [DOI: https://dx.doi.org/10.5194/bg-14-3763-2017]
22. Gailis, M.; Kohfeld, K.E.; Pellatt, M.G.; Carlson, D. Quantifying blue carbon for the largest salt marsh in southern British Columbia: Implications for regional coastal management. Coast. Eng. J.; 2021; 63, pp. 275-309. [DOI: https://dx.doi.org/10.1080/21664250.2021.1894815]
23. Eid, E.M.; El-Bebany, A.F.; Alrumman, S.A. Distribution of soil organic carbon in the mangrove forests along the southern Saudi Arabian Red Sea coast. Rend. Lincei; 2016; 27, pp. 629-637. [DOI: https://dx.doi.org/10.1007/s12210-016-0542-6]
24. Arshad, M.; Alrumman, S.; Eid, E.M. Evaluation of carbon sequestration in the sediment of polluted and non-polluted locations of mangroves. Fund. Appl. Limnol.; 2018; 192, pp. 53-64. [DOI: https://dx.doi.org/10.1127/fal/2018/1127]
25. Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett.; 2018; 13, 055002. [DOI: https://dx.doi.org/10.1088/1748-9326/aabe1c]
26. Eid, E.M.; Arshad, M.; Shaltout, K.H.; El-Sheikh, M.A.; Alfarhan, A.H.; Picó, Y.; Barcelo, D. Effect of the conversion of mangroves into shrimp farms on carbon stock in the sediment along the southern Red Sea coast, Saudi Arabia. Environ. Res.; 2019; 176, 108536. [DOI: https://dx.doi.org/10.1016/j.envres.2019.108536] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31228808]
27. Eid, E.M.; Khedher, K.M.; Ayed, H.; Arshad, M.; Moatamed, A.; Mouldi, A. Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia; 2020; 62, pp. 200-213. [DOI: https://dx.doi.org/10.1016/j.oceano.2019.12.001]
28. Shaltout, K.H.; Ahmed, M.T.; Alrumman, S.A.; Ahmed, D.A.; Eid, E.M. Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia; 2020; 62, pp. 56-69. [DOI: https://dx.doi.org/10.1016/j.oceano.2019.08.002]
29. Negrin, V.L.; Spetter, C.V.; Asteasuain, R.O.; Perillo, G.M.E.; Marcovecchio, J.E. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh. J. Environ. Sci.; 2011; 23, pp. 212-221. [DOI: https://dx.doi.org/10.1016/S1001-0742(10)60395-6]
30. Bull, I.D.; Bergen, P.F.; Bol, R.; Brown, S.; Gledhill, A.R.; Gray, A.J.; Harkness, D.D.; Woodbury, S.E.; Evershed, R.P. Estimating the contribution of Spartina anglica biomass to salt-marsh sediments using compound specific stable carbon isotope measurements. Org. Geochem.; 1999; 30, pp. 477-483. [DOI: https://dx.doi.org/10.1016/S0146-6380(99)00022-4]
31. Gao, J.H.; Bai, F.L.; Yang, Y.; Gao, S.; Liu, Z.Y.; Li, J. Influence of Spartina colonization on the supply and accumulation of organic carbon in tidal salt marshes of northern Jiangsu Province. Chin. J. Coastal Res.; 2012; 28, pp. 486-498. [DOI: https://dx.doi.org/10.2112/JCOASTRES-D-11-00062.1]
32. Morley, N.J.F. The coastal waters of the Red Sea. Bull. Mar. Res. Cen.; 1975; 5, pp. 8-19.
33. Nabhan, A.I.; Yang, W. Modern sedimentary facies, depositional environments, and major controlling processes on an arid siliciclastic coast, Al qahmah, SE Red Sea, Saudi Arabia. J. Afr. Earth Sci.; 2018; 140, pp. 9-28. [DOI: https://dx.doi.org/10.1016/j.jafrearsci.2017.12.014]
34. PME (Presidency of Metrology and Environment Protection). Surface Annual Climatological Report; Jizan, Presidency of Metrology and Environment Protection: National Meteorology and Environment Center: Ulaanbaatar, Saudi Arabia, 2012.
35. Hickey, B.; Goudie, A.S. The Use of TOMS and MODIS to Identify Dust Storm Source Areas: The Tokar Delta (Sudan) and the Seistan Basin (South West) in Geomorphological Variations; Goudie, A.S.; Kalvoda, J. 2007; Volume 3, pp. 37-57.
36. Brukner, A.; Rowlands, G.; Riegl, B.; Purkis, S.; William, A.; Renaud, P. Khaled Bin Sultan Living Oceans Foundation Atlas of Saudi Arabian Red Sea Marine Habitats; Panoramic Press: Phoenix, AZ, USA, 2012; 262.
37. Hakami, B.A.; Abu Seif, E.S. Geotechnical aspects and associated problems of Al-Shuaiba Lagoon soil, Red Sea coast, Saudi Arabia. Environ. Earth Sci.; 2019; 78, 158. [DOI: https://dx.doi.org/10.1007/s12665-019-8136-0]
38. Liang, S.; Wang, J. Fractional vegetation cover. Advanced Remote Sensing: Terrestrial Information Extraction and Applications; Elsevier Inc.: London, UK, 2020; pp. 477-510.
39. Peet, R.K.; Wentworth, T.R.; White, P.S. A flexible, multipurpose method for recording vegetation composition and structure. Castanea; 1998; 63, pp. 262-274.
40. Soil Survey Staff. Keys to Soil Taxonomy; 12th ed. USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014.
41. Arifuzzaman, M.; Habib, M.A.; Al-Turki, M.K.; Khan, M.I.; Ali, M.M. Improvement and characterization of sabkha soil of Saudi Arabia: A review. J. Teknol.; 2016; 78, pp. 1-11. [DOI: https://dx.doi.org/10.11113/jt.v78.5352]
42. Eid, E.M.; Shaltout, K.H. Distribution of soil organic carbon in the mangrove Avicennia marina (Forssk.) Vierh. along the Egyptian Red Sea coast. Reg. Stud. Mar. Sci.; 2016; 3, pp. 76-82. [DOI: https://dx.doi.org/10.1016/j.rsma.2015.05.006]
43. Eid, E.M.; Keshta, A.E.; Shaltout, K.H.; Baldwin, A.H.; El-Din, S.; Ahmed, A. Carbon sequestration potential of the five Mediterranean lakes of Egypt. Fund. Appl. Limnol.; 2017; 190, pp. 87-96. [DOI: https://dx.doi.org/10.1127/fal/2017/0993]
44. Wilke, B.M. Determination of chemical and physical soil properties. Manual for Soil Analysis-Monitoring and Assessing Soil Bioremediation; Margesin, R.; Schinner, F. Springer: Berlin/Heidelberg, Germany, 2005; pp. 47-95.
45. Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001.
46. Craft, C.B.; Seneca, E.D.; Broome, S.W. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion. Estuaries; 1991; 14, pp. 175-179. [DOI: https://dx.doi.org/10.2307/1351691]
47. Han, F.; Hu, W.; Zheng, J.; Du, F.; Zhang, X. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma; 2010; 154, pp. 261-266. [DOI: https://dx.doi.org/10.1016/j.geoderma.2009.10.011]
48. Meersmans, J.; De Ridder, F.; Canters, F.; De Baets, S.; Van Molle, M. A multiple regression approach to assess the spatial distribution of soil organic carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma; 2008; 143, pp. 1-13. [DOI: https://dx.doi.org/10.1016/j.geoderma.2007.08.025]
49. IBM SPSS. IBM SPSS Statistics for Windows, Version 23.0; IBM Corp.: Armonk, NY, USA, 2015.
50. Pravin, R.; Dodha, V.; Vidya, D.; Manab, C.; Saroj, M. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. Int. J. Sci. Res. Pub.; 2013; 3, pp. 1-8.
51. Drewry, J.J.; Cameron, K.C.; Buchan, G.D. Pasture yield and soil physical property responses to soil compaction from treading and grazing-a review. Aust. J. Soil Res.; 2008; 46, pp. 237-256. [DOI: https://dx.doi.org/10.1071/SR07125]
52. Howard, P.J.A.; Loveland, P.J.; Bradley, R.I.; Dry, F.T.; Howard, D.M.; Howard, D.C. The carbon content of soil and its geographical-distribution in Great Britain. Soil Use Manag.; 1995; 11, pp. 9-15. [DOI: https://dx.doi.org/10.1111/j.1475-2743.1995.tb00488.x]
53. Drake, K.; Halifax, H.; Adamowicz, S.C.; Craft, C. Carbon sequestration in tidal salt marshes of the northeast United States. Environ. Manag.; 2015; 56, pp. 998-1008. [DOI: https://dx.doi.org/10.1007/s00267-015-0568-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26108413]
54. Bai, J.; Zhang, G.; Zhao, Q.; Lu, Q.; Jia, J.; Cui, B.; Liu, X. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci. Rep.; 2016; 6, 34835. [DOI: https://dx.doi.org/10.1038/srep34835] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27708421]
55. Ellison, J.C.; Beasy, K.M. Sediment carbon accumulation in southern latitude saltmarsh communities of Tasmania, Australia. Biology; 2018; 7, 27. [DOI: https://dx.doi.org/10.3390/biology7020027] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29724027]
56. Gispert, M.; Phang, C.; Carrasco-Barea, L. The role of soil as a carbon sink in coastal salt-marsh and agropastoral systems at La Pletera, NE Spain. Catena; 2020; 185, 104331. [DOI: https://dx.doi.org/10.1016/j.catena.2019.104331]
57. Sherry, S.; Ramon, A.; Eric, M.; Richard, E.; Barry, W.; Peter, D.; Susan, T. Precambrian shield wetlands: Hydrologic control of the sources and export of dissolved organic matter. Clim. Change; 1998; 40, pp. 167-188.
58. Li, S.B.; Chen, P.H.; Huang, J.S.; Hsueh, M.L.; Hsieh, L.Y.; Lee, C.L.; Lin, H.J. Factors regulating carbon sinks in mangrove ecosystems. Glob. Chang. Biol.; 2018; 24, pp. 4195-4210. [DOI: https://dx.doi.org/10.1111/gcb.14322]
59. Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; McLeod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.L. et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Chang. Biol.; 2018; 24, pp. 5361-5379. [DOI: https://dx.doi.org/10.1111/gcb.14376]
60. Bu, N.-S.; Qu, J.-F.; Li, G.; Zhao, B.; Zhang, R.-J. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol. Eng.; 2015; 81, pp. 335-339. [DOI: https://dx.doi.org/10.1016/j.ecoleng.2015.04.051]
61. Atwood, T.B.; Connolly, R.M.; Almahasheer, H.; Carnell, P.E.; Duarte, C.M.; Ewers Lewis, C.J.; Irigoien, X.; Kelleway, J.J.; Lavery, P.S.; Macreadie, P.I. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang.; 2017; 7, pp. 523-528. [DOI: https://dx.doi.org/10.1038/nclimate3326]
62. Pethick, J.S. Long-term accretion rates on tidal marshes. J. Sediment. Petrol.; 1979; 51, pp. 571-577.
63. Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl.; 2000; 10, pp. 423-436. [DOI: https://dx.doi.org/10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2]
64. Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ.; 2011; 9, pp. 552-560. [DOI: https://dx.doi.org/10.1890/110004]
65. Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles; 2003; 17, 1111. [DOI: https://dx.doi.org/10.1029/2002GB001917]
66. Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Núria, M. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change; 2013; 3, pp. 961-968. [DOI: https://dx.doi.org/10.1038/nclimate1970]
67. Lai, R.; Lagormarsino, A.; Ledda, L.; Roggero, P.P. Variation in soil C and microbial functions across tree canopy projection and open grassland microenvironments. Turk. J. Agric. For.; 2014; 38, pp. 62-69. [DOI: https://dx.doi.org/10.3906/tar-1303-82]
68. Yang, Y.H.; Fang, J.; Tang, Y.; Ji, C.; Zheng, C.; He, J.; Zhu, B. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol.; 2008; 14, pp. 1592-1599. [DOI: https://dx.doi.org/10.1111/j.1365-2486.2008.01591.x]
69. Deng, B.; Zhang, J.; Wu, Y. Recent sediment accumulation and carbon burial in the East China Sea. Global Biogeochem. Cycles; 2006; 20, pp. 466-480. [DOI: https://dx.doi.org/10.1029/2005GB002559]
70. Gao, J.H.; Feng, Z.X.; Chen, L.; Wang, Y.P.; Bai, F.; Li, J. The effect of biomass variations of Spartina alterniflora on the organic carbon content and composition of a salt marsh in northern Jiangsu Province, China. Ecol. Eng.; 2016; 95, pp. 160-170. [DOI: https://dx.doi.org/10.1016/j.ecoleng.2016.06.088]
71. van Ardenne, L.B.; Jolicouer, S.; Bérubé, D.; Burdick, D.; Chmura, G.L. The importance of geomorphic context for estimating the carbon stock of salt marshes. Geoderma; 2018; 330, pp. 264-275. [DOI: https://dx.doi.org/10.1016/j.geoderma.2018.06.003]
72. Harvey, R.J.; Garbutt, A.; Hawkins, S.J.; Skov, M.W. No detectable broad-scale effect of livestock grazing on soil blue-carbon stock in salt marshes. Front. Ecol. Evol.; 2019; 7, 151. [DOI: https://dx.doi.org/10.3389/fevo.2019.00151]
73. Mueller, P.; Ladiges, N.; Jack, A.; Schmedl, G.; Kutzbach, L.; Jensen, K.; Nolte, S. Assessing the long-term carbon-sequestration potential of the semi-natural salt marshes in the European Wadden Sea. Ecosphere; 2019; 10, e02556. [DOI: https://dx.doi.org/10.1002/ecs2.2556]
74. Adams, C.A.; Andrews, J.E.; Jickells, T. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Sci. Total Environ.; 2012; 434, pp. 240-251. [DOI: https://dx.doi.org/10.1016/j.scitotenv.2011.11.058] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22197113]
75. Callaway, J.C.; Borgnis, E.L.; Turner, R.E.; Milan, C.S. Carbon sequestration and sediment accretion in San Francisco Bay Tidal Wetlands. Estuar. Coast.; 2012; 35, pp. 1163-1181. [DOI: https://dx.doi.org/10.1007/s12237-012-9508-9]
76. Gao, Y.; Zhou, J.; Wang, L.; Guo, J.; Feng, J.; Wu, H.; Lin, G. Distribution patterns and controlling factors for the soil organic carbon in four mangrove forests of China. Global Ecol. Conserv.; 2019; 17, e00575. [DOI: https://dx.doi.org/10.1016/j.gecco.2019.e00575]
77. Perera, N.; Lokupitiya, E.; Halwatura, D.; Udagedara, S. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation. Sci. Total Environ.; 2022; 820, 153313. [DOI: https://dx.doi.org/10.1016/j.scitotenv.2022.153313]
78. Neue, H.U.; Gaunt, J.L.; Wang, Z.P.; Becker-Heidmann, P.; Quijano, C. Carbon in tropical wetlands. Geoderma; 1997; 79, pp. 163-185. [DOI: https://dx.doi.org/10.1016/S0016-7061(97)00041-4]
79. Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci.; 2014; 6, pp. 195-219. [DOI: https://dx.doi.org/10.1146/annurev-marine-010213-135020]
80. Amundson, R. The carbon budget in soils. Annu. Rev. Earth Planet. Sci.; 2001; 29, pp. 535-562. [DOI: https://dx.doi.org/10.1146/annurev.earth.29.1.535]
81. Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature; 2006; 440, pp. 165-173. [DOI: https://dx.doi.org/10.1038/nature04514]
82. De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett.; 2008; 11, pp. 516-531. [DOI: https://dx.doi.org/10.1111/j.1461-0248.2008.01164.x]
83. Twilley, R.R.; Rovai, A.S.; Riul, P. Coastal morphology explains global blue carbon distributions. Front. Eco. Environ.; 2018; 16, pp. 503-508. [DOI: https://dx.doi.org/10.1002/fee.1937]
84. Qiu, D.; Cui, B.; Yan, J.; Ma, X.; Ning, Z.; Wang, F.; Sui, H.; Bai, J. Effect of burrowing crabs on retention and accumulation of soil carbon and nitrogen in an intertidal salt marsh. J. Sea Res.; 2019; 154, 101808. [DOI: https://dx.doi.org/10.1016/j.seares.2019.101808]
85. Zhao, Q.; Bai, J.; Liu, Q.; Lu, Q.; Gao, Z.; Wang, J. Spatial and seasonal variations of soil carbon and nitrogen content and stock in a tidal salt marsh with Tamarix chinensis, China. Wetlands; 2016; 36, pp. S145-S152. [DOI: https://dx.doi.org/10.1007/s13157-015-0647-1]
86. Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Ralph, P.J. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes. Ecosystems; 2016; 19, pp. 865-880. [DOI: https://dx.doi.org/10.1007/s10021-016-9972-3]
87. Hansen, K.; Butzeck, C.; Eschenbach, A.; Gröngröft, A.; Jensen, K.; Pfeiffer, E.-M. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). J. Soils Sediments; 2017; 17, pp. 47-60. [DOI: https://dx.doi.org/10.1007/s11368-016-1500-8]
88. Howard, J.; Hoyt, S.; Isensee, K.; Pidgeon, E.; Telszewski, M.E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows; Conservation International, Intergovernmental Oceanographic Commission of UNESCO: International Union for Conservation of Nature: Arlington, VA, USA, 2014.
89. Alongi, D.M. Carbon balance in salt marsh and mangrove ecosystems: A global synthesis. J. Mar. Sci. Eng.; 2020; 8, 767. [DOI: https://dx.doi.org/10.3390/jmse8100767]
90. Brown, D.R.; Conrad, S.; Akkerman, K.; Fairfax, S.; Fredericks, J.; Hanrio, E.; Sanders, L.M.; Scott, E.; Skillington, A.; Tucker, J. et al. Seagrass, mangrove and saltmarsh sedimentary carbon stocks in an urban estuary: Coffs Harbour, Australia. Reg. Stud. Mar. Sci.; 2016; 8, pp. 1-6. [DOI: https://dx.doi.org/10.1016/j.rsma.2016.08.005]
91. Mandura, A.S.; Khafaji, A.K.; Saifullah, S.M. Mangrove ecosystem of southern Red Sea coast of Saudi Arabia. Proc. Saudi Biol. Soc.; 1987; 10, pp. 165-193.
92. Almahasheer, H.; Duarte, C.M.; Irigoien, X. Nutrient limitation in central Red Sea mangroves. Front. Mar. Sci.; 2016; 3, 271. [DOI: https://dx.doi.org/10.3389/fmars.2016.00271]
93. Yuan, Y.; Li, X.; Jiang, J.; Xue, L.; Craft, C.B. Distribution of organic carbon storage in different salt-marsh plant communities: A case study at the Yangtze Estuary. Estuar. Coast. Shelf Sci.; 2020; 243, 106900. [DOI: https://dx.doi.org/10.1016/j.ecss.2020.106900]
94. Schile, L.M.; Kauffman, J.B.; Crooks, S.; Fourqurean, J.W.; Glavan, J.; Megonigal, J.P. Limits on carbon sequestration in arid blue carbon ecosystems. Ecol. Appl.; 2017; 27, pp. 859-874. [DOI: https://dx.doi.org/10.1002/eap.1489]
95. Liu, J.-E.; Han, R.-M.; Su, H.-R.; Wu, Y.-P.; Zhang, L.-M.; Richardson, C.J.; Wang, G.-X. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China. Ecol. Eng.; 2017; 106, pp. 132-139.
96. Mao, R.; Ye, S.-Y.; Zhang, X.-H. Soil-aggregate-associated organic carbon along vegetation zones in tidal salt marshes in the Liaohe Delta. Clean Soil Air Water; 2018; 46, 1800049. [DOI: https://dx.doi.org/10.1002/clen.201800049]
97. Kaviarasan, T.; Dahms, H.U.; Gokul, M.S.; Henciya, S.; Muthukumar, K.; Shankar, S.; James, R.A. Seasonal species variation of sediment organic carbon stocks in salt marshes of Tuticorin Area, Southern India. Wetlands; 2019; 39, pp. 483-494. [DOI: https://dx.doi.org/10.1007/s13157-018-1094-6]
98. Byun, C.; Lee, S.-H.; Kang, H. Estimation of carbon storage in coastal wetlands and comparison of different management schemes in South Korea. J. Ecol. Environ.; 2019; 43, 8. [DOI: https://dx.doi.org/10.1186/s41610-019-0106-7]
99. Raw, J.L.; Julie, C.L.; Adams, J.B. A comparison of soil carbon pools across a mangrove-salt marsh ecotone at the southern African warm-temperate range limit. S. Afr. J. Bot.; 2019; 127, pp. 301-307. [DOI: https://dx.doi.org/10.1016/j.sajb.2019.11.005]
100. Andrews, J.E.; Samways, G.; Shimmield, G.B. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK. Sci. Total Environ.; 2008; 405, pp. 1-13. [DOI: https://dx.doi.org/10.1016/j.scitotenv.2008.07.044]
101. González-Alcaraz, M.N.; Egea, C.; Jiménez-Cárceles, F.J.; Párraga, I.; María-Cervantes, A.; Delgado, M.J.; Álvarez-Rogel, J. Storage of organic carbon, nitrogen and phosphorus in the soil–plant system of Phragmites australis stands from a eutrophicated Mediterranean salt marsh. Geoderma; 2012; 185–186, pp. 61-72. [DOI: https://dx.doi.org/10.1016/j.geoderma.2012.03.019]
102. Howe, A.J.; Rodríguez, J.F.; Saco, P.M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci.; 2009; 84, pp. 75-83. [DOI: https://dx.doi.org/10.1016/j.ecss.2009.06.006]
103. Livesley, S.J.; Andrusiak, S.M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuar. Coast. Shelf Sci.; 2012; 97, pp. 19-27. [DOI: https://dx.doi.org/10.1016/j.ecss.2011.11.002]
104. Santini, N.S.; Lovelock, C.E.; Hua, Q.; Zawadzki, A.; Mazumder, D.; Mercer, T.R.; Muñoz-Rojas, M.; Hardwick, S.A.; Madala, B.S.; Cornwell, W. et al. Natural and regenerated saltmarshes exhibit similar soil and belowground organic carbon stocks, root production and soil respiration. Ecosystems; 2019; 22, pp. 1803-1822.
105. Unger, V.; Elsey-Quirk, T.; Sommerfield, C.; Velinsky, D. Stability of organic carbon accumulating in Spartina alterniflora-dominated salt marshes of the Mid-Atlantic U.S. Estuar. Coast. Shelf Sci.; 2016; 182, pp. 179-189.
106. Drexler, J.Z.; Woo, I.; Fuller, C.C.; Nakai, G. Carbon accumulation and vertical accretion in a restored versus historic salt marsh in southern Puget Sound, Washington, United States. Restor. Ecol.; 2019; 27, pp. 1117-1127.
107. Ruiz-Fernández, A.C.; Carnero-Bravo, V.; Sanchez-Cabeza, J.A.; Pérez-Bernal, L.H.; Amaya-Monterrosa, O.A.; Bojórquez-Sánchez, S.; López-Mendoza, P.G.; Cardoso-Mohedano, J.G.; Dunbar, R.B.; Mucciarone, D.A. et al. Carbon burial and storage in tropical salt marshes under the influence of sea level rise. Sci. Total Environ.; 2018; 630, pp. 1628-1640. [DOI: https://dx.doi.org/10.1016/j.scitotenv.2018.02.246]
108. Kauffman, J.B.; Bernardino, A.F.; Ferreira, T.O.; Giovannoni, L.R.; Gomes, L.E.d.O.; Romero, D.J.; Jimenez, L.C.Z.; Ruiz, F. Carbon stocks of mangroves and salt marshes of the Amazon Region, Brazil. Biol. Lett.; 2018; 14, 20180208. [DOI: https://dx.doi.org/10.1098/rsbl.2018.0208]
109. Sahu, S.K.; Kathiresan, K. The age and species composition of mangroves forest directly influence the net primary productivity and carbon sequestration potential. Biocatal. Agr. Biotechnol.; 2019; 20, 101235.
110. IPCC (Intergovernmental Panel on Climate Change). The Fourth Assessment Report Climate Change 2007; Pachauri, R.K.; Reisinger, A. IPCC: Geneva, Switzerland, 2007.
111. Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using Earth observation satellite data. Global Ecol. Biogeogr.; 2011; 20, pp. 154-159.
112. Gedan, K.B.; Silliman, B.; Bertness, M. Centuries of human-driven change in salt marsh ecosystems. Annu. Rev. Mar. Sci.; 2009; 1, pp. 117-141.
113. Bianchi, T.S.; Allison, M.A.; Zhao, J.; Li, X.; Comeaux, R.S.; Feagin, R.A.; Kulawardhana, R.W. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci.; 2013; 119, pp. 7-16.
114. Ray, R.; Weigt, M. Seasonal and habitat-wise variations of creek water particulate and dissolved organic carbon in arid mangrove (the Persian Gulf). Cont. Shelf Res.; 2018; 165, pp. 60-70.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
There has been increasing focus on conserving coastal ecosystems as they have been recognized as high ecosystem carbon stocks and are in the process of land conversion. The present study aims to examine how different vegetation covers impact the soil organic carbon (SOC) stock in coastal sabkhas. To this end, the study was carried out at ten sampling sites represent ten sabkhas in Saudi Arabia’s southern Red Sea coast for two main goals: (1) to examine the vertical distribution of SOC content, SOC density, and the soil bulk density (SBD) based on different vegetation covers, and (2) to assess these locations’ SOC stocks. This study posits that sabkhas with different vegetation covers had distinct parameters specified above. Significant SBD differences were observed in sabkhas with different vegetation covers, with the lowest mean values of sabkhas having >75–100% vegetation cover and the highest mean values of sabkhas having 0–25% vegetation cover. The studied sabkhas also showed significant difference in the total means of SOC density, SOC content, and SOC stock in terms of different vegetation covers, with the highest mean values of sabkhas having >75–100% vegetation cover and the lowest mean of sabkhas having 0–25% vegetation cover. The present study is the first to focus on Saudi Arabia’s sabkha blue carbon stocks and its results can help add to the literature on sabkhas carbon stock, thus aiding relevant government agencies working towards sabkhas management, encouraging public awareness regarding sabkhas conservation stocks, and their part in climate change mitigation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Department of Biology, College of Science, King Khalid University, Abha 61321, Saudi Arabia; Department of Botany, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
2 Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61321, Saudi Arabia
3 Department of Biology, College of Science, King Khalid University, Abha 61321, Saudi Arabia
4 Biology Department, College of Science, Tabuk University, Tabuk 47512, Saudi Arabia
5 Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia
6 Botany Department, College of Science, Tanta University, Tanta 31512, Egypt