Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we present a new reference model that approximates the actual shape of the Earth, based on the concept of the deformed spheres with the deformation parameter λ. These surfaces, which are called λ-spheres, were introduced in another setting by Faridi and Schucking as an alternative to the spheroids (i.e., ellipsoids of revolution). Using their explicit parametrizations that we have derived in our previous papers, here we have defined the corresponding isothermal (conformal) coordinates as well as obtained and solved the differential equation describing the loxodromes (or rhumb lines) on such surfaces. Next, the direct and inverse problems for loxodromes have been formulated and the explicit solutions for azimuths and arc lengths have been presented. Using these explicit solutions, we have assessed the value of the deformation parameter λ for our reference model on the basis of the values for the semi-major axis of the Earth a and the quarter-meridian mp (i.e., the distance between the Equator and the North or South Pole) for the current best ellipsoidal reference model for the geoid, i.e., WGS 84 (World Geodetic System 1984). The latter is designed for use as the reference system for the GPS (Global Positioning System). Finally, we have compared the results obtained with the use of the newly proposed reference model for the geoid with the corresponding results for the ellipsoidal (WGS 84) and spherical reference models used in the literature.

Details

Title
λ-Spheres as a New Reference Model for Geoid: Explicit Solutions of the Direct and Inverse Problems for Loxodromes (Rhumb Lines)
Author
Kovalchuk, Vasyl 1   VIAFID ORCID Logo  ; Mladenov, Ivaïlo M 2   VIAFID ORCID Logo 

 Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B, Pawińskiego Str., 02-106 Warsaw, Poland 
 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria or ; Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria 
First page
3356
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716571230
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.