Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Polyester/cotton (T/C) blend fabrics are highly flammable due to the particular “scaffolding effect”. In this work, an intumescent flame retardant (IFR) agent containing P, N, and B was designed and synthesized using bio-based phytic acid, pentaerythritol, boric acid, and urea. The IFR compounds were deposited onto a T/C blend fabric by the surface-coating route. The chemical structure of IFR agent and its potential cross-linking reactions with T/C fibers were characterized. The morphology, thermal stability, heat-release ability, flame retardancy, and mechanism of coated T/C blend fabrics were explored. The self-extinguishing action was observed for the coated T/C blend fabric with a weight gain of 13.7%; the limiting oxygen index (LOI) value increased to 27.1% versus 16.9% for a pristine one. Furthermore, the intumescent flame retardant (IFR) coating imparted T/C blend fabrics with high thermal stability and significantly suppressed heat release by nearly 50%. The char residue analyses on morphology and element content confirmed the intumescent FR action for coated T/C blend fabrics. The prepared IFR coating has great potential to serve as an eco-friendly approach for improving the flame retardancy of T/C blend textiles.

Details

Title
Fabrication of P/N/B-Based Intumescent Flame-Retardant Coating for Polyester/Cotton Blend Fabric
Author
Wei-Lin, He 1 ; Yi-Ting, Huang 1 ; Gu, Liang 1 ; Ji-Cheng, Shen 2 ; Xian-Wei, Cheng 1 ; Jin-Ping, Guan 1 

 Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China 
 Suzhou Haitai Textile Co., Ltd., Suzhou Knitting Industrial Park, Suzhou 215228, China 
First page
6420
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716581318
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.