Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Remote sensing images with high temporal and spatial resolutions play a crucial role in land surface-change monitoring, vegetation monitoring, and natural disaster mapping. However, existing technical conditions and cost constraints make it very difficult to directly obtain remote sensing images with high temporal and spatial resolution. Consequently, spatiotemporal fusion technology for remote sensing images has attracted considerable attention. In recent years, deep learning-based fusion methods have been developed. In this study, to improve the accuracy and robustness of deep learning models and better extract the spatiotemporal information of remote sensing images, the existing multi-stream remote sensing spatiotemporal fusion network MSNet is improved using dilated convolution and an improved transformer encoder to develop an enhanced version called EMSNet. Dilated convolution is used to extract time information and reduce parameters. The improved transformer encoder is improved to further adapt to image-fusion technology and effectively extract spatiotemporal information. A new weight strategy is used for fusion that substantially improves the prediction accuracy of the model, image quality, and fusion effect. The superiority of the proposed approach is confirmed by comparing it with six representative spatiotemporal fusion algorithms on three disparate datasets. Compared with MSNet, EMSNet improved SSIM by 15.3% on the CIA dataset, ERGAS by 92.1% on the LGC dataset, and RMSE by 92.9% on the AHB dataset.

Details

Title
Enhanced Multi-Stream Remote Sensing Spatiotemporal Fusion Network Based on Transformer and Dilated Convolution
Author
Li, Weisheng  VIAFID ORCID Logo  ; Cao, Dongwen  VIAFID ORCID Logo  ; Xiang, Minghao
First page
4544
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716581852
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.